Skip to main content

Computational Methods for the Predictive Design of Bone Tissue Engineering Scaffolds

  • Reference work entry
  • First Online:
3D Printing and Biofabrication

Abstract

The design of bone tissue engineering materials and scaffold structures made thereof is a delicate task, owing to the various, sometimes contradicting requirements that must be fulfilled. The traditional approach is based on a trial-and-error strategy, which may result in a lengthy and inefficient process. Aiming at improvement of this unsatisfactory situation, computer simulations, based on sound mathematical modeling of the involved processes, have been identified as promising complement to experimental testing. After giving a brief overview of available modeling and simulation concepts, the core of this chapter is presented, namely recent examples of multiscale, continuum micromechanics-based homogenization approaches developed in relation to bone tissue engineering. First, the fundamentals of continuum micromechanics are introduced, in order to lay the groundwork for the subsequently elaborated stiffness and strength homogenization approach related to a hydroxyapatite-based granular bone tissue engineering material. For the latter, the derivation of an upscaling scheme allowing for estimating the macroscopic stiffness and the macroscopic strength is demonstrated. Finally, avenues to utilization of this method in the design process of such materials are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972

    Article  CAS  PubMed  Google Scholar 

  • Akao M, Aoki H, Kato K (1981) Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci 16(3):809–812

    Article  CAS  Google Scholar 

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand E, Hellmich C (2009) Multiscale elasticity of tissue engineering scaffolds with tissue-engineered bone: a continuum micromechanics approach. J Eng Mech (ASCE) 135(5):395–412

    Article  Google Scholar 

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  CAS  Google Scholar 

  • Botchwey EA, Pollack SR, Levine EM, Johnston ED, Laurencin CT (2004) Quantitative analysis of three-dimensional fluid flow in rotating bioreactors for tissue engineering. J Biomed Mater Res A 69A(2):205–215

    Article  CAS  Google Scholar 

  • Budianksy B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12(2):81–97

    Article  Google Scholar 

  • Chung CA, Chen CW, Chen CP, Tseng CS (2007) Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol Bioeng 97(6):1603–1616

    Article  CAS  PubMed  Google Scholar 

  • Czenek A, Blanchard R, Dejaco A, Sigurjónsson ÓE, Örlygsson G, Gargiulo P, Hellmich C (2014) Quantitative intravoxel analysis of microct-scanned resorbing ceramic biomaterials – perspectives for computer-aided biomaterial design. J Mater Res 29(23):2757–2772

    Article  CAS  Google Scholar 

  • Dejaco A, Komlev VS, Jaroszewicz J, Swieszkowski W, Hellmich C (2012) Micro CT-based multiscale elasticity of double-porous (pre-cracked) hydroxyapatite granules for regenerative medicine. J Biomech 45(6):1068–1075

    Article  PubMed  Google Scholar 

  • Deudé V, Dormieux L, Kondo D, Maghous S (2002) Micromechanical approach to nonlinear poroelasticity: application to cracked rocks. J Eng Mech (ASCE) 128(8):848–855

    Article  Google Scholar 

  • Dias MR, Fernandes PR, Guedes JM, Hollister SJ (2012) Permeability analysis of scaffolds for bone tissue engineering. J Biomech 45(6):938–944

    Article  CAS  PubMed  Google Scholar 

  • Dormieux L, Lemarchand E, Kondo D, Fairbairn E (2004) Elements of poromicromechanics applied to concrete. Mater Struct/Concr Sci Eng 37(265):31–42

    CAS  Google Scholar 

  • Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, Chichester

    Book  Google Scholar 

  • Drugan WR, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  CAS  Google Scholar 

  • Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. Bone Joint J 69-B(1):45–55

    Google Scholar 

  • Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  CAS  PubMed  Google Scholar 

  • Fritsch A, Dormieux L, Hellmich C (2006) Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. C R Méc 334(3):151–157

    Article  CAS  Google Scholar 

  • Fritsch A, Dormieux L, Hellmich C, Sanahuja J (2007) Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: fundamentals and application to strength of hydroxyapatite biomaterials. J Mater Sci 42(21):8824–8837

    Article  CAS  Google Scholar 

  • Fritsch A, Dormieux L, Hellmich C, Sanahuja J (2009a) Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J Biomed Mater Res – Part A 88A(1):149–161

    Article  CAS  Google Scholar 

  • Fritsch A, Hellmich C, Dormieux L (2009b) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260(2):230–252

    Article  CAS  PubMed  Google Scholar 

  • Fritsch A, Hellmich C, Dormieux L (2010) The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos Trans R Soc Lond A 368:1913–1935

    Article  CAS  Google Scholar 

  • Fritsch A, Hellmich C, Young P (2013) Micromechanics-derived scaling relations for poroelasticity and strength of brittle porous polycrystals. J Appl Mech (ASME) 80(2):020905

    Article  Google Scholar 

  • Geris L (2013) Computational modeling in tissue engineering, Studies in mechanobiology, tissue engineering and biomaterials, vol 10. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17(4):1131–1141

    Article  CAS  Google Scholar 

  • Hellmich C, Ulm F-J (2002) Micromechanical model for ultra-structural stiffness of mineralized tissues. J Eng Mech (ASCE) 128(8):898–908

    Article  Google Scholar 

  • Hellmich C, Ulm F-J, Dormieux L (2004) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? - arguments from a multiscale approach. Biomech Model Mechanobiol 2(4):219–238

    Article  PubMed  Google Scholar 

  • Hervé E, Zaoui A (1993) n-Layered inclusion-based micromechanical modelling. Int J Eng Sci 31(1):1–10

    Article  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372

    Article  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  CAS  PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  CAS  Google Scholar 

  • Hutmacher DW, Singh H (2008) Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol 26(4):166–172

    Article  CAS  PubMed  Google Scholar 

  • Jacobs CR, Temiyasathit S, Castillo AB (2010) Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng 12:369–400

    Article  CAS  PubMed  Google Scholar 

  • Jaecques SVN, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J (2004) Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25(9):1683–1696

    Article  CAS  PubMed  Google Scholar 

  • Katz JL, Ukraincik K (1971) On the anisotropic elastic properties of bone. Calcif Tissue Int 4(3):221–227

    CAS  Google Scholar 

  • Kohlhauser C, Hellmich C (2013) Ultrasonic contact pulse transmission for elastic wave velocity and stiffness determination: influence of specimen geometry and porosity. Eng Struct 47:115–133

    Article  Google Scholar 

  • Komlev VS, Barinov SM, Koplik EV (2002) A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials 23(16):3449–3454

    Article  CAS  PubMed  Google Scholar 

  • Komlev VS, Barinov SM, Girardin E, Oscarsson S, Rosengren A, Rustichelli F, Orlovskii VP (2003) Porous spherical hydroxyapatite and fluorhydroxyapatite granules: processing and characterization. Sci Technol Adv Mater 4(6):503–508

    Article  CAS  Google Scholar 

  • Lacroix D, Chateau A, Ginebra M-P, Planell JA (2006) Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30):5326–5334

    Article  CAS  PubMed  Google Scholar 

  • Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finiteelement modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans R Soc London, Ser A 367(1895):1993–2009

    Article  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  Google Scholar 

  • Li X, Wang L, Fan Y, Feng Q, Cui F-Z, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 101A(8):2424–2435

    Article  CAS  Google Scholar 

  • Luczynski K, Dejaco A, Lahayne O, Jaroszewicz J, Swieszkowski W, Hellmich C (2012) MicroCT/micromechanics-based finite element models and quasi-static unloading tests deliver consistent values for Young’s modulus of rapid-prototyped polymer-ceramic tissue engineering scaffold. CMES – Comput Model Eng Sci 87(6):505–529

    Google Scholar 

  • Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916

    Article  CAS  PubMed  Google Scholar 

  • Milan J-L, Planell JA, Lacroix D (2009) Computational modelling of the mechanical environment of osteogenesis within a polylactic acid–calcium phosphate glass scaffold. Biomaterials 30(25):4219–4226

    Article  CAS  PubMed  Google Scholar 

  • Morin C, Vass V, Hellmich C (2017) Micromechanics of elastoplastic porous polycrystals: theory, algorithm, and application to osteonal bone. Int J Plast 91:238–267

    Article  CAS  Google Scholar 

  • Olivares AL, Marsal È, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30):6142–6149

    Article  CAS  PubMed  Google Scholar 

  • Pastrama MI, Scheiner S, Pivonka P, Hellmich C (2018) A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation. Bone 107: 208–221

    Article  PubMed  Google Scholar 

  • Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38(3):543–549

    Article  PubMed  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560

    PubMed  CAS  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Castillo A, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  PubMed  Google Scholar 

  • Sandino C, Lacroix D (2011) A dynamical study of the mechanical stimuli and tissue differentiation within a cap scaffold based on micro-ct finite element models. Biomech Model Mechanobiol 10(4):565–576

    Article  PubMed  Google Scholar 

  • Sandino C, Planell JA, Lacroix D (2008) A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech 41(5):1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Herrera JA, García-Aznar JM, Doblaré M, Micro-macro M (2008) Numerical modelling of bone regeneration in tissue engineering. Comput Methods Appl Mech Eng 197(33–40):3092–3107

    Article  Google Scholar 

  • Sanz-Herrera JA, García-Aznar JM, Doblaré M (2009a) On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater 5(1):219–229

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Herrera JA, García-Aznar JM, Doblaré M (2009b) A mathematical approach to bone tissue engineering. Philos Trans R Soc London, Ser A 367(1895):2055–2078

    Article  CAS  Google Scholar 

  • Scheiner S, Sinibaldi R, Pichler B, Komlev V, Renghini C, Vitale-Brovarone C, Rustichelli F, Hellmich C (2009) Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials 30(12):2411–2419

    Article  CAS  PubMed  Google Scholar 

  • Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multi-scale mechanics, for computer simulations of bone remodeling. Comput Methods Appl Mech Eng 254:181–196

    Article  Google Scholar 

  • Scheiner S, Komlev VS, Gurin AN, Hellmich C (2016a) Multiscale mathematical modeling in dental tissue engineering: towards computer-aided design of a regenerative system based on hydroxyapatite granules, focusing on early and mid-term stiffness recovery. Front Physiol 7(383):1–18

    Google Scholar 

  • Scheiner S, Komlev VS, Hellmich C (2016b) Strength increase during ceramic biomaterial-induced bone regeneration: a micromechanical study. Int J Fract 202(2):217–235

    Article  CAS  Google Scholar 

  • Shareef MY, Messer PF, van Noort R (1993) Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic. Biomaterials 14(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Simmons CA, Meguid SA, Pilliar RM (2001) Differences in osseointegration rate due to implant surface geometry can be explained by local tissue strains. J Orthop Res 19(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Sturm S, Zhou S, Mai Y-W, Li Q (2010) On stiffness of scaffolds for bone tissue engineering – a numerical study. J Biomech 43(9):1738–1744

    Article  PubMed  Google Scholar 

  • Thompson M, Willis JR (1991) A reformation of the equations anisotropic elasticity. J Appl Mech 58(3):612–616

    Article  Google Scholar 

  • Truscello S, Kerckhofs G, Van Bael S, Pyka G, Schrooten J, Van Oosterwyck H (2012) Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater 8(4):1648–1658

    Article  CAS  PubMed  Google Scholar 

  • van Gaalen S, Kruyt M, Meijer G, Mistry A, Mikos A, van den Beucken J, Jansen J, de Groot K, Cancedda R, Olivo C, Yaszemski M, Dhert W (2008) Chapter 19. Tissue engineering of bone. In: Van Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R, de Bruijn JD, Sohier J (eds) Tissue Engineering. Academic, Burlington, pp 559–610

    Chapter  Google Scholar 

  • Voronov R, VanGordon S, Sikavitsas VI, Papavassiliou DV (2010) Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-ct. J Biomech 43(7):1279–1286

    Article  PubMed  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  CAS  PubMed  Google Scholar 

  • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  Google Scholar 

  • Zaoui A (1997) Chapter 6. Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet PM (ed) Continuum micromechanics, CISM courses and lectures, vol 377. Springer, Wien/New York, pp 291–347

    Chapter  Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech (ASCE) 128(8):808–816

    Article  Google Scholar 

Download references

Acknowledgments

In the context of the research presented in Sect. 3.3 of this chapter, the partial financial support by the European Research Council (ERC), in the framework of the project Multiscale poromicromechanics of bone materials, with links to biology and medicine (project number FP7-257023), as well as the partial financial support by the Russian Science Foundation (grant number 15-13-00108), are gratefully acknowledged. Furthermore, COST-action MP1005, NAMABIO – From nano to macro biomaterials (design, processing, characterization, modeling) and applications to stem cells regenerative orthopedic and dental medicine has provided means for a sustainable collaboration over several years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Scheiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scheiner, S., Komlev, V.S., Hellmich, C. (2018). Computational Methods for the Predictive Design of Bone Tissue Engineering Scaffolds. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_21

Download citation

Publish with us

Policies and ethics