Skip to main content

Additive Manufacturing for Tissue Engineering

  • Reference work entry
  • First Online:
Book cover 3D Printing and Biofabrication

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Additive manufacturing is becoming a focus of attention owing to its unique abilities to fabricate different objects using various materials. Perhaps printing technologies are the most popular type of additive manufacturing that is gaining ground in a wide range of industrial and academic utilization. Three- and two-dimensional printing of different materials such as ceramics, plastics, and metals as well as electronic functional materials is considered as the next revolution in science and technology. Importantly, these technologies are being used extensively in medical applications. Tissue engineering, which aims to fabricate human tissues and organs, is benefiting from the reproducible, computer-controlled, and precise procedure that can be obtained by printers. Three-dimensional printings of scaffolds, cell-laden biomaterials, and cellular (scaffold-free) materials hold a great promise to advance the tissue engineering field toward the fabrication of functional tissues and organs. Here, we review the utilization of different printing technologies for various tissue engineering applications. The application of printers in tissue engineering of bones, cartilages, and tendons and ligaments is di. Moreover, an overview of the advancements in printing skeletal muscles as well as the cardiovascular system is given. Finally, future directions and challenges will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATST:

Apparent tissue surface tension

AM:

Additive manufacturing

ACL:

Anterior cruciate ligament

CAD:

Computer aided design

CADD:

Computer aided design and drafting

DLP:

Digital light processing

EBM:

Electron beam melting

ECM:

Extra cellular matrix

FDM:

Fused deposition modeling

FFF:

Fused filament fabrication

GAG:

Glycosaminoglycan

HA:

Hydroxyapatite

hPMSCs:

Human placenta-derived mesenchymal stem cells

MHC:

Myosin heavy chain

MSCs:

Mesenchymal stem cells

PAM:

Pressure-assisted microsyringe

PCL:

Polycaprolactone

PED:

Precision extrusion deposition

PEG:

Polyethylene glycol

PEGDMA:

Poly (ethylene glycol)dimethacrylate

PEO:

Polyethylene oxide

PHBV:

Poly (hydroxybutyrate-co-hydroxyvalerate)

PLA:

Polylactic acid

PLDLLA:

Poly (L-lactide-co-D,L-lactide)

PLGA:

Poly-lactic-co-glycolic acid

PLLA:

Poly (L-lactide) acid

PPF:

Poly (propylene fumarate)

SEM:

Scanning electron microscopy

SLA:

Stereolithography

SLM:

Selective laser melting

SLS:

Selective laser sintering

TCP:

Tricalcium phosphate

3D:

Three-dimensional

References

  • Ahmadi S et al (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater 34:106–115

    Article  PubMed  CAS  Google Scholar 

  • Ahn S et al (2012) Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Biomacromolecules 13(9):2997–3003

    Article  PubMed  CAS  Google Scholar 

  • Ahn S et al (2013) Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym 98(1):936–942

    Article  PubMed  CAS  Google Scholar 

  • Atala A (2009) Engineering organs. Curr Opin Biotechnol 20:575–592

    Article  PubMed  CAS  Google Scholar 

  • Atala A, Yoo JJ (2015) Essentials of 3D biofabrication and translation. Academic Press, Cambridge, MA

    Chapter  Google Scholar 

  • Atala A, Bauer B, Soker S, Yoo J, Retik A (2006) Tissue-engineering autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  • Aviss K et al (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cell Mater 19:193–204

    Article  PubMed  CAS  Google Scholar 

  • Barber JG et al (2011) Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng A 19(11-12):1265–1274

    Article  CAS  Google Scholar 

  • Barry JJ et al (2008) In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction. Acta Biomater 4(6):1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Barucca G et al (2015) Structural characterization of biomedical co–Cr–Mo components produced by direct metal laser sintering. Mater Sci Eng C 48:263–269

    Article  CAS  Google Scholar 

  • Bertol LS et al (2010) Medical design: direct metal laser sintering of Ti–6Al–4V. Mater Des 31(8):3982–3988

    Article  CAS  Google Scholar 

  • Bhumiratana S, Vunjak-Novakovic G (2012) Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 1(1):64–69

    Article  PubMed  CAS  Google Scholar 

  • Bian W et al (2011) Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation. Biofabrication 3(3):034103

    Article  PubMed  CAS  Google Scholar 

  • Biemond J et al (2013) Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. J Mater Sci Mater Med 24(3):745–753

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield P (2002) Choice of heart valve prosthesis. Heart 87:583–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobbert F et al (2017) Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater 53:572–584

    Article  PubMed  CAS  Google Scholar 

  • Boland T et al (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  PubMed  CAS  Google Scholar 

  • Bose S et al (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23(4):479–486

    Article  CAS  Google Scholar 

  • Bose S et al (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  CAS  Google Scholar 

  • Bsat S et al (2015) Effect of alkali-acid-heat chemical surface treatment on electron beam melted porous titanium and its apatite forming ability. Materials 8(4):1612–1625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell PG et al (2005) Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26(33):6762–6770

    Article  PubMed  CAS  Google Scholar 

  • Campoli G et al (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965

    Article  CAS  Google Scholar 

  • Cao T et al (2003) Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng 9(4, supplement 1):103–112

    Article  Google Scholar 

  • Carignan RG, et al (1990) Thumb joint prosthesis, Google Patents

    Google Scholar 

  • Castilho M et al (2013) Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication 5(3):035012

    Article  PubMed  CAS  Google Scholar 

  • Castilho M et al (2014) Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication 6(2):025005

    Article  PubMed  Google Scholar 

  • Censi R et al (2011) A printable Photopolymerizable thermosensitive p (HPMAm-lactate)-PEG hydrogel for tissue engineering. Adv Funct Mater 21(10):1833–1842

    Article  CAS  Google Scholar 

  • Centanni J, Straseski J, Wicks A, Hank J, Rasmussen C, Lokota M, Schurr M, Foster K, Faucher L, Caruso D, Comer A, Allen-Hoffmann B (2011) StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial. Ann Surg 253(4):672–683

    Article  PubMed  Google Scholar 

  • Chen C-H et al (2011) Effects of gelatin modification on rapid prototyping PCL scaffolds for cartilage engineering. J Mech Med Biol 11(05):993–1002

    Article  Google Scholar 

  • Chen B et al (2012) In vivo tendon engineering with skeletal muscle derived cells in a mouse model. Biomaterials 33(26):6086–6097

    Article  PubMed  CAS  Google Scholar 

  • Chen C-H et al (2014a) Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Mater Sci Eng C 40:389–397

    Article  CAS  Google Scholar 

  • Chen C-H et al (2014b) Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 6(1):015004

    Article  PubMed  CAS  Google Scholar 

  • Cheng X et al (2012) Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater 16:153–162

    Article  PubMed  CAS  Google Scholar 

  • Cheung D, Duan B, Butcher J (2015) Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 15(8):1155–1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiong M, Wang Z, Pedrozo Z, Cao D, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill J, Lavandero S (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Disease 2:e244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi J-W et al (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15):5494–5503

    Article  CAS  Google Scholar 

  • Chung EJ et al (2013a) In situ forming collagen–hyaluronic acid membrane structures: mechanism of self-assembly and applications in regenerative medicine. Acta Biomater 9(2):5153–5161

    Article  PubMed  CAS  Google Scholar 

  • Chung JH et al (2013b) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1(7):763–773

    Article  CAS  PubMed  Google Scholar 

  • Ciocca L et al (2011) Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput 49(11):1347–1352

    Article  PubMed  CAS  Google Scholar 

  • Claeyssens F et al (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5):3219–3223

    Article  PubMed  CAS  Google Scholar 

  • Cooke MN et al (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM et al (2010) Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng A 16(5):1749–1759

    Article  CAS  Google Scholar 

  • Costantini M et al (2017) Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131:98–110

    Article  PubMed  CAS  Google Scholar 

  • Cui X et al (2012a) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui X et al (2012b) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng A 18(11–12):1304–1312

    Article  CAS  Google Scholar 

  • Cui X et al (2012c) Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng 109(9):2357–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui X, Gao G, Yonezawa T, Dai G (2014) Human Cartilage Tissue Fabrication Using Three-dimensional Inkjet Printing Technology. J. Vis. Exp (88), e51294, https://doi.org/10.3791/51294

  • Cvetkovic C et al (2014) Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci 111(28):10125–10130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dadbakhsh S et al (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16(9):1140–1146

    Article  CAS  Google Scholar 

  • Darsell J et al (2003) From CT scan to ceramic bone graft. J Am Ceram Soc 86(7):1076–1080

    Article  CAS  Google Scholar 

  • Dean D et al (2012) Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds: this paper highlights the main issues regarding the application of continuous digital light processing (cDLP) for the production of highly accurate PPF scaffolds with layers as thin as 60 μm for bone tissue engineering. Virt Phy Prototyp 7(1):13–24

    Article  Google Scholar 

  • Dellinger JG et al (2007) Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J Biomed Mater Res A 82(2):383–394

    Article  PubMed  CAS  Google Scholar 

  • Di Bella C et al (2015) 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines. Front Surg 2:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle K (2014) Bioprinting: from patches to parts. Genetic Engineering and Biotechnology Mary Ann Liebert, Inc. News 34(10) pp. 1, 34–35 https://doi.org/10.1089/gen.34.10.02

    Article  Google Scholar 

  • Duan B,Wang M (2010a) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor Bin Duan, Min Wang J. R. Soc. Interface, https://doi.org/10.1098/rsif.2010.0127.focus. Published 26 May 2010

  • Duan B, Wang M (2010b) Encapsulation and release of biomolecules from ca–P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polym Degrad Stab 95(9):1655–1664

    Article  CAS  Google Scholar 

  • Duan B et al (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Hockaday L, Kang K, Butcher J (2013) 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res 101(5):1255–1264

    Article  CAS  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday L, Butcher J (2014) 3D printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846

    Article  PubMed  CAS  Google Scholar 

  • Elomaa L et al (2011) Preparation of poly (ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 7(11):3850–3856

    Article  PubMed  CAS  Google Scholar 

  • Elomaa L et al (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ε-caprolactone) by stereolithography. Compos Sci Technol 74:99–106

    Article  CAS  Google Scholar 

  • Eosoly S et al (2010) Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater 6(7):2511–2517

    Article  PubMed  CAS  Google Scholar 

  • Eosoly S et al (2012) Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS). Mater Sci Eng C 32(8):2250–2257

    Article  CAS  Google Scholar 

  • Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fedorovich NE et al (2011) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fielding GA et al (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28(2):113–122

    Article  PubMed  CAS  Google Scholar 

  • Forgacs G (2012) Perfusable vascular networks. Nat Mater 11:746–747

    Article  PubMed  CAS  Google Scholar 

  • Freed LE et al (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27(1):11–23

    Article  PubMed  CAS  Google Scholar 

  • Fu Q et al (2011) Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7(10):3547–3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230

    Article  PubMed  CAS  Google Scholar 

  • Gao G et al (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9(10):1304–1311

    Article  PubMed  CAS  Google Scholar 

  • Gao G et al (2015a) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355

    Article  PubMed  CAS  Google Scholar 

  • Gao G et al (2015b) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Kupfer M, Jung J, Yang L, Zhang P, Da Sie Y, Tran Q, Ajeti V, Freeman B, Fast V, Campagnola P, Ogle B, Zhang J (2017) Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and native-like high-resolution, 3-dimensionally printed scaffold. Circ Res 120:1318–1325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gbureck U et al (2007a) Direct printing of bioceramic implants with spatially localized angiogenic factors. Adv Mater 19(6):795–800

    Article  CAS  Google Scholar 

  • Gbureck U et al (2007b) Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release 122(2):173–180

    Article  PubMed  CAS  Google Scholar 

  • Ge Z et al (2009) Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J Biomater Appl 23(6):533–547

    Article  CAS  Google Scholar 

  • Geetha M et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci 54(3):397–425

    Article  CAS  Google Scholar 

  • Gibson I et al (2010) Additive manufacturing technologies. Springer, New York

    Book  Google Scholar 

  • Goodridge RD et al (2007) Biological evaluation of an apatite–mullite glass-ceramic produced via selective laser sintering. Acta Biomater 3(2):221–231

    Article  PubMed  CAS  Google Scholar 

  • Gruene M et al (2010) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17(1):79–87

    Article  PubMed  Google Scholar 

  • Hedayati R et al (2017) How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials? J Mech Behav Biomed Mater 65:831–841

    Article  PubMed  CAS  Google Scholar 

  • Heinl P et al (2008) Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544

    Article  PubMed  CAS  Google Scholar 

  • Heller C et al (2009) Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polym Sci A Polym Chem 47(24):6941–6954

    Article  CAS  Google Scholar 

  • Heo SJ et al (2009) Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. J Biomed Mater Res A 89(1):108–116

    PubMed  Google Scholar 

  • Hockaday L, Kang K, Colangelo N, Cheung P, Duan B, Malone E, Wu J, Giradi L, Bonassar L, Lipson H, Chu C, Butcher J (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  PubMed  CAS  Google Scholar 

  • Hoque ME et al (2012) Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers 97(2):83–93

    Article  PubMed  CAS  Google Scholar 

  • Hsu S-h et al (2007) Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J Biomed Mater Res B Appl Biomater 80(2):519–527

    Article  PubMed  CAS  Google Scholar 

  • Hsu S-h et al (2011) Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Eng A 17(11-12):1549–1560

    Article  CAS  Google Scholar 

  • Hsu S-h et al (2012) Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication 4(1):015002

    Article  PubMed  CAS  Google Scholar 

  • Hung KC et al (2014) Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 3(10):1578–1587

    Article  PubMed  CAS  Google Scholar 

  • Husmann I et al (1996) Growth factors in skeletal muscle regeneration. Cytokine Growth Factor Rev 7(3):249–258

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher DW et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res A 55(2):203–216

    Article  CAS  Google Scholar 

  • Igawa K et al (2006) Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs 9(4):234–240

    Article  PubMed  CAS  Google Scholar 

  • Jansen J et al (2009) Fumaric acid monoethyl ester-functionalized poly (D, L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 10(2):214–220

    Article  PubMed  CAS  Google Scholar 

  • Jardini A et al (2011) Application of direct metal laser sintering in titanium alloy for cranioplasty. Brazilian conference on manufacturing engineering

    Google Scholar 

  • Jose RR et al (2016) Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci Eng 2(10):1662–1678

    Article  CAS  PubMed  Google Scholar 

  • Kalita SJ et al (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620

    Article  CAS  Google Scholar 

  • Kanczler JM et al (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071

    Article  PubMed  CAS  Google Scholar 

  • Kang H-W et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  PubMed  CAS  Google Scholar 

  • KazimoÄŸlu C et al (2003) A novel biodegradable PCL film for tendon reconstruction: Achilles tendon defect model in rats. Int J Artif Organs 26(9):804–812

    PubMed  Google Scholar 

  • Ker ED et al (2011) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32(32):8097–8107

    Article  PubMed  CAS  Google Scholar 

  • Keriquel V et al (2010) In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2(1):014101

    Article  PubMed  CAS  Google Scholar 

  • Kew S et al (2012) Synthetic collagen fascicles for the regeneration of tendon tissue. Acta Biomater 8(10):3723–3731

    Article  PubMed  CAS  Google Scholar 

  • Khalil S et al (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11(1):9–17

    Article  Google Scholar 

  • Khalyfa A et al (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18(5):909–916

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Cho D-W (2009) The optimization of hybrid scaffold fabrication process in precision deposition system using design of experiments. Microsyst Technol 15(6):843–851

    Article  CAS  Google Scholar 

  • Kim Y, Kim G (2013) Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities. J Mater Chem B 1(25):3185–3194

    Article  CAS  PubMed  Google Scholar 

  • Kim JY et al (2007) Development of a bone scaffold using HA nanopowder and micro-stereolithography technology. Microelectron Eng 84(5):1762–1765

    Article  CAS  Google Scholar 

  • Kim JH et al (2016) Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med 13(6):647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klammert U et al (2010) 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Cranio-Maxillofac Surg 38(8):565–570

    Article  Google Scholar 

  • Koch L et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Kolan KC et al (2012) Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater 13:14–24

    Article  PubMed  CAS  Google Scholar 

  • Kolesky D, Truby R, Gladman A, Busbee T, Homan K, Lewis J (2014) 3D Bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  PubMed  CAS  Google Scholar 

  • Kolesky D, Homan K, Skylar-Scott M, Lewis J (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113(12):3179–3184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korpela J et al (2013) Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater 101(4):610–619

    Article  PubMed  CAS  Google Scholar 

  • Kruth J-P (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Annals Manuf Technol 40(2):603–614

    Article  Google Scholar 

  • Kruth J-P et al (1998) Progress in additive manufacturing and rapid prototyping. CIRP Annals Manufa Technol 47(2):525–540

    Article  Google Scholar 

  • Kundu J et al (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  PubMed  CAS  Google Scholar 

  • Lam CXF et al (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1):49–56

    Article  Google Scholar 

  • Lam CX et al (2007) Comparison of the degradation of polycaprolactone and polycaprolactone– (β-tricalcium phosphate) scaffolds in alkaline medium. Polym Int 56(6):718–728

    Article  CAS  Google Scholar 

  • Lam CX et al (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3(3):034108

    Article  PubMed  CAS  Google Scholar 

  • Lam C et al (2009a) Composite PLDLLA/TCP scaffolds for bone engineering: mechanical and in vitro evaluations. 13th International Conference on Biomedical Engineering, Springer

    Google Scholar 

  • Lam CX et al (2009b) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90(3):906–919

    Article  PubMed  CAS  Google Scholar 

  • Lan PX et al (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20(1):271–279

    Article  PubMed  CAS  Google Scholar 

  • Lee JW et al (2007a) 3D scaffold fabrication with PPF/DEF using micro-stereolithography. Microelectron Eng 84(5):1702–1705

    Article  CAS  Google Scholar 

  • Lee K-W et al (2007b) Poly (propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8(4):1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Lee S-J et al (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10(2):233–241

    Article  PubMed  CAS  Google Scholar 

  • Lee JW et al (2009) Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng 86(4):1465–1467

    Article  CAS  Google Scholar 

  • Lee JW et al (2011) Bone regeneration using a microstereolithography-produced customized poly (propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32(3):744–752

    Article  PubMed  CAS  Google Scholar 

  • Lee JS et al (2012) Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering. J Biomed Mater Res A 100(7):1846–1853

    Article  PubMed  CAS  Google Scholar 

  • Lee H et al (2013) Cell-laden poly (É›-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods 19(10):784–793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leukers B et al (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Li X et al (2009) Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett 63(3):403–405

    Article  CAS  Google Scholar 

  • Li J et al (2011) Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. J Biotechnol 151(1):87–93

    Article  PubMed  CAS  Google Scholar 

  • Liang D et al (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linzhong Z et al (2010) The research of technique on fabricating hydrogel scaffolds for cartilage tissue engineering based on stereo-lithography. Digital Manufacturing and Automation (ICDMA), 2010 International Conference on, IEEE

    Google Scholar 

  • Liu L et al (2009) Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 88(1):254–263

    Article  PubMed  CAS  Google Scholar 

  • Liu A et al (2016) 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Sci Rep 6:21704; https://doi.org/10.1038/srep21704

  • Lode A et al (2014) Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J Tissue Eng Regen Med 8(9):682–693

    Article  PubMed  CAS  Google Scholar 

  • Lohfeld S et al (2012) Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater 8(9):3446–3456

    Article  PubMed  CAS  Google Scholar 

  • Lorrison J et al (2005) Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering. J Mater Sci Mater Med 16(8):775–781

    Article  PubMed  CAS  Google Scholar 

  • Lu Y et al (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77(2):396–405

    Article  PubMed  CAS  Google Scholar 

  • Luo Y et al (2015) Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Interfaces 7(12):6541–6549

    Article  PubMed  CAS  Google Scholar 

  • Lv J et al (2015a) Electron beam melting fabrication of porous Ti6Al4V scaffolds: cytocompatibility and osteogenesis. Adv Eng Mater 17(9):1391–1398

    Article  CAS  Google Scholar 

  • Lv J et al (2015b) Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomed Mater 10(3):035013

    Article  PubMed  CAS  Google Scholar 

  • Ma L et al (2017) 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Sci Rep 7, 7626; https://doi.org/10.1038/s41598-017-07243-3

  • Malda J et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  PubMed  CAS  Google Scholar 

  • Marino A et al (2014) The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater 10(10):4304–4313

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Vázquez FJ et al (2010) Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 6(11):4361–4368

    Article  PubMed  CAS  Google Scholar 

  • Martins A et al (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3(1):37–42

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JC et al (1997) Custom and modular components in primary total hip replacement. Clin Orthop Relat Res 344:162–171

    Article  Google Scholar 

  • McCune M, Shafiee A, Forgacs G, Kosztin I (2014) Predictive modeling of post bioprinting structure formation. Soft Matter 10:1790–1800

    Article  PubMed  CAS  Google Scholar 

  • Melchels FP et al (2009) A poly (D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23):3801–3809

    Article  PubMed  CAS  Google Scholar 

  • Melchels FP et al (2010) Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6(11):4208–4217

    Article  PubMed  CAS  Google Scholar 

  • Melchels FP et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Article  CAS  Google Scholar 

  • Merceron TK et al (2015) A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication 7(3):035003

    Article  PubMed  CAS  Google Scholar 

  • Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3(2):23–24

    Article  Google Scholar 

  • Miller J, Stevens K, Yang M, Baker B, Nguyen D, Cohen D, Toro E, Chen A, Galie P, Yu X, Chaturvedi R, Bhatia S, Chen C (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miranda P et al (2006) Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2(4):457–466

    Article  PubMed  Google Scholar 

  • Miranda P et al (2008) Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater 4(6):1715–1724

    Article  PubMed  CAS  Google Scholar 

  • Moldovan L, Babbey C, Murphy M, Moldovan N (2017) Comparison of Biomateria-dependent and -independent bioprinting methods for cardiovascular medicine. Curr Oponion Biomed Eng 2:124–131

    Article  Google Scholar 

  • Moroni L et al (2006) Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 27(35):5918–5926

    Article  PubMed  CAS  Google Scholar 

  • Mosadegh B, Xiong G, Dunham S, Min J (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10:034002

    Article  PubMed  CAS  Google Scholar 

  • Mott EJ et al (2016) Digital micromirror device (DMD)-based 3D printing of poly (propylene fumarate) scaffolds. Mater Sci Eng C 61:301–311

    Article  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  PubMed  CAS  Google Scholar 

  • Murr L et al (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans Royal Soc London A Math Phys Eng Sci 368(1917):1999–2032

    Article  CAS  Google Scholar 

  • Murr L et al (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4(7):1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Murr LE et al (2012) Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int J Biomat 2012:14

    Google Scholar 

  • Naing M et al (2005) Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyp J 11(4):249–259

    Article  Google Scholar 

  • Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5(7):1312–1319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norotte C, Marga F, Niklason L, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189

    Article  CAS  Google Scholar 

  • Oh SH et al (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671

    Article  PubMed  CAS  Google Scholar 

  • Oliveira A et al (2009) Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions. Acta Biomater 5(5):1626–1638

    Article  PubMed  CAS  Google Scholar 

  • Oliveira A et al (2012) Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. J Mater Sci Mater Med 23(11):2821–2830

    Article  PubMed  CAS  Google Scholar 

  • Oryan A et al (2013) A long-term in vivo investigation on the effects of xenogenous based, electrospun, collagen implants on the healing of experimentally-induced large tendon defects. J Musculoskelet Neuronal Interact 13(3):353–367

    PubMed  CAS  Google Scholar 

  • Ostrovidov S et al (2014) Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev 20(5):403–436

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang HW et al (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 9(3):431–439

    Article  PubMed  CAS  Google Scholar 

  • Owen R et al (2016) Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. J Mech Behav Biomed Mater 54:159–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699

    Article  PubMed  Google Scholar 

  • Padilla S et al (2007) Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J Biomed Mater Res A 81(1):224–232

    Article  PubMed  CAS  Google Scholar 

  • Palmquist A et al (2013) Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: experimental studies in sheep. J Biomater Appl 27(8):1003–1016

    Article  PubMed  CAS  Google Scholar 

  • Park JK et al (2011) Solid free-form fabrication of tissue-engineering scaffolds with a poly (lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein–2/poly (ethylene glycol) complex. Adv Funct Mater 21(15):2906–2912

    Article  CAS  Google Scholar 

  • Parthasarathy J et al (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249–259

    Article  PubMed  Google Scholar 

  • Pashneh-Tala S, McNeil S, Claeyssens F (2016) The tissue-engineered vascular graft- past, present, and future. Tissue Eng Part B 22(1):68–100

    Article  CAS  Google Scholar 

  • Pati F, Jang J, Ha D, Won K, Rhie J, Shim J, Kim D, Cho D (2013) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  Google Scholar 

  • Patz T et al (2005) Two-dimensional differential adherence and alignment of C2C12 myoblasts. Mater Sci Eng B 123(3):242–247

    Article  CAS  Google Scholar 

  • Pereira TF et al (2012) 3D printing of poly (3-hydroxybutyrate) porous structures using selective laser sintering. Macromolecular Symposia, Wiley Online Library

    Article  CAS  Google Scholar 

  • Petrochenko PE et al (2015) Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells. Adv Healthc Mater 4(5):739–747

    Article  PubMed  CAS  Google Scholar 

  • Phillippi JA et al (2008) Microenvironments engineered by inkjet Bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Poldervaart MT et al (2013) Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One 8(8):e72610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poldervaart MT et al (2014) Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release 184:58–66

    Article  PubMed  CAS  Google Scholar 

  • Ponader S et al (2010) In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res A 92(1):56–62

    Article  PubMed  CAS  Google Scholar 

  • Qiao F et al (2015) Application of 3D printed customized external fixator in fracture reduction. Injury 46(6):1150–1155

    Article  PubMed  Google Scholar 

  • Qiu Y et al (2013) In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering. J Tissue Eng Regen Med 10(3):E216–E226

    Article  PubMed  CAS  Google Scholar 

  • Rahimtoola ZO, Hubach P (2004) Total modular wrist prosthesis: a new design. Scand J Plast Reconstr Surg Hand Surg 38(3):160–165

    Article  PubMed  Google Scholar 

  • Raman R et al (2016) High-resolution projection Microstereolithography for patterning of Neovasculature. Adv Healthc Mater 5(5):610–619

    Article  PubMed  CAS  Google Scholar 

  • Ramanath H et al (2008) Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J Mater Sci Mater Med 19(7):2541–2550

    Article  PubMed  CAS  Google Scholar 

  • Ramón-Azcón J et al (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25(29):4028–4034

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan S et al (2014) Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles. Ann Biomed Eng 42(7):1391–1405

    Article  PubMed  Google Scholar 

  • Razal JM et al (2009) Wet-spun biodegradable fibers on conducting platforms: novel architectures for muscle regeneration. Adv Funct Mater 19(21):3381–3388

    Article  CAS  Google Scholar 

  • Regeneration T (2015) Understanding tissue physiology and development to engineer functional substitutes. Academic Press, Cambridge, MA

    Google Scholar 

  • Rengier F et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341

    Article  PubMed  CAS  Google Scholar 

  • Resnina N et al (2013) Influence of chemical composition and pre-heating temperature on the structure and martensitic transformation in porous TiNi-based shape memory alloys, produced by self-propagating high-temperature synthesis. Intermetallics 32:81–89

    Article  CAS  Google Scholar 

  • Ronca A et al (2013) Preparation of designed poly (D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9(4):5989–5996

    Article  PubMed  CAS  Google Scholar 

  • Russias J et al (2007) Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res A 83(2):434–445

    Article  PubMed  CAS  Google Scholar 

  • Sahoo S et al (2006) Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 12(1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Sahoo S et al (2010) A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31(11):2990–2998

    Article  PubMed  CAS  Google Scholar 

  • Saijo H et al (2009) Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs 12(3):200–205

    Article  PubMed  Google Scholar 

  • Samad WZ, Salleh MM, Shafiee A, Yarmo MA (2010a) Transparent conducting thin films of fluoro doped tin oxide (FTO) deposited using inkjet printing technique. IEEE Int Conf Semicond Elec 52–55

    Google Scholar 

  • Samad WZ, Salleh MM, Shafiee A, Yarmo MA (2010b) Preparation nanostructure thin films of fluorine doped tin oxide by inkjet printing technique. AIP Conf Proc 1284:83–86

    Article  CAS  Google Scholar 

  • Samad WZ, Salleh MM, Shafiee A, Yarmo MA (2010c) Transparent conductive electrode of fluorine doped tin oxide prepared by inkjet printing technique. Material Science Forum 663(665:694–697

    Article  CAS  Google Scholar 

  • Samad WZ, Salleh MM, Shafiee A, Yarmo MA (2011) Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malaysiana 40(3):251–257

    CAS  Google Scholar 

  • San Choi J et al (2008) The influence of electrospun aligned poly (É›-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906

    Article  CAS  Google Scholar 

  • Santos CF et al (2012) Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater Sci Eng C 32(5):1293–1298

    Article  CAS  Google Scholar 

  • Santos ARC et al (2013) Additive manufacturing techniques for scaffold-based cartilage tissue engineering: a review on various additive manufacturing technologies in generating scaffolds for cartilage tissue engineering. Virtual Phy Prototyp 8(3):175–186

    Article  Google Scholar 

  • Sato M et al (2000) Reconstruction of rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical studies. J Orthop Sci 5(3):256–267

    Article  PubMed  CAS  Google Scholar 

  • Schantz J-T et al (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(4, Supplement 1):127–139

    Article  Google Scholar 

  • Schüller-Ravoo S et al (2013) Flexible and elastic scaffolds for cartilage tissue engineering prepared by Stereolithography using poly (trimethylene carbonate)-based resins. Macromol Biosci 13(12):1711–1719

    Article  PubMed  CAS  Google Scholar 

  • Schuurman W et al (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561

    Article  PubMed  CAS  Google Scholar 

  • Seck TM et al (2010) Designed biodegradable hydrogel structures prepared by stereolithography using poly (ethylene glycol)/poly (D, L-lactide)-based resins. J Control Release 148(1):34–41

    Article  PubMed  CAS  Google Scholar 

  • Seitz H et al (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2):782–788

    Article  PubMed  CAS  Google Scholar 

  • Seol YJ et al (2013) A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol Bioeng 110(5):1444–1455

    Article  PubMed  CAS  Google Scholar 

  • Seol Y-J et al (2014) Bioprinting technology and its applications. In: European journal of cardio-thoracic surgery 46(3):342–348, https://doi.org/10.1093/ejcts/ezu148

    Article  PubMed  Google Scholar 

  • Serra T et al (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530

    Article  PubMed  CAS  Google Scholar 

  • Seyednejad H et al (2012) In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly (ε-caprolactone). Biomaterials 33(17):4309–4318

    Article  PubMed  CAS  Google Scholar 

  • Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22:245–265

    Article  Google Scholar 

  • Shafiee A, Atala A (2017) Tissue engineering: toward a new era of medicine. Annu Rev Med 68:29–40

    Article  PubMed  CAS  Google Scholar 

  • Shafiee A, Salleh MM, Yahaya M (2008) Fabrication of organic solar cells based on a blend of donor-acceptor molecules by inkjet printing technique. IEEE Int Conf Semicond Elect 2008:319–322

    Google Scholar 

  • Shafiee A, Mat Salleh M, Yahaya M (2009) Fabrication of organic solar cells based on a blend of poly (3-octylthiophene-2, 5-diyl) and fullerene derivative using inkjet printing technique. Proc SPIE 7493:74932D

    Article  CAS  Google Scholar 

  • Shafiee A, McCune M, Forgacs G, Kosztin I (2015) Post-deposition bioink self-assembly: a quantitative study. Biofabrication 7:045005

    Article  PubMed  Google Scholar 

  • Shafiee A, Norotte C, Ghadiri E (2017) Cellular bioink surface tension: a tunable biophysical parameter for faster bioprinted-tissue maturation. Bioprinting 8(C):13–21

    Article  Google Scholar 

  • Sharma B, Elisseeff JH (2004) Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32(1):148–159

    Article  PubMed  Google Scholar 

  • Shen W et al (2012) Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplant 21(5):943–958

    Article  PubMed  Google Scholar 

  • Sherwood JK et al (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  PubMed  CAS  Google Scholar 

  • Shim J-H et al (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014

    Article  CAS  Google Scholar 

  • Shishkovsky I et al (2010) Porous titanium and nitinol implants synthesized by SHS/SLS: microstructural and histomorphological analyses of tissue reactions. Int J Self Propag High Temp Synth 19(2):157–167

    Article  CAS  Google Scholar 

  • Shor L et al (2005) Precision extruding deposition of composite polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. Bioengineering conference, 2005. Proceedings of the IEEE 31st annual northeast. In: IEEE

    Google Scholar 

  • Shor L et al (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297

    Article  PubMed  CAS  Google Scholar 

  • Shor L et al (2009) Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1(1):015003

    Article  PubMed  CAS  Google Scholar 

  • Shuai C et al (2013) In vitro bioactivity and degradability of β-tricalcium phosphate porous scaffold fabricated via selective laser sintering. Biotechnol Appl Biochem 60(2):266–273

    Article  PubMed  CAS  Google Scholar 

  • Simpson RL et al (2008) Development of a 95/5 poly (L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Sobral JM et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Standard A (2012) F2792. 2012. Standard terminology for additive manufacturing technologies. ASTM International. See www.astm.org, West Conshohocken. https://doi.org/10.1520/F2792-12

    Book  Google Scholar 

  • Stübinger S et al (2013) Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep. J Biomed Mater Res B Appl Biomater 101(7):1154–1163

    Article  PubMed  CAS  Google Scholar 

  • Sudarmadji N et al (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537

    Article  PubMed  CAS  Google Scholar 

  • Sun AX et al (2015) Projection stereolithographic fabrication of human adipose stem cell-incorporated biodegradable scaffolds for cartilage tissue engineering. Front Bioeng Biotechnol 3:115

    PubMed  PubMed Central  Google Scholar 

  • Suwanprateeb J, Chumnanklang R (2006) Three-dimensional printing of porous polyethylene structure using water-based binders. J Biomed Mater Res B Appl Biomater 78(1):138–145

    Article  PubMed  CAS  Google Scholar 

  • Suwanprateeb J et al (2008) Fabrication of bioactive hydroxyapatite/bis-GMA based composite via three dimensional printing. J Mater Sci Mater Med 19(7):2637–2645

    Article  PubMed  CAS  Google Scholar 

  • Suwanprateeb J et al (2009) Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med 20(6):1281

    Article  PubMed  CAS  Google Scholar 

  • Suwanprateeb J et al (2012) Development of porous powder printed high density polyethylene for personalized bone implants. J Porous Mater 19(5):623–632

    Article  CAS  Google Scholar 

  • Tan H et al (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarafder S et al (2013a) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7(8):631–641

    Article  PubMed  CAS  Google Scholar 

  • Tarafder S et al (2013b) 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci 1(12):1250–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tartarisco G et al (2009) Polyurethane unimorph bender microfabricated with pressure assisted Microsyringe (PAM) for biomedical applications. Mater Sci Eng C 29(6):1835–1841

    Article  CAS  Google Scholar 

  • Tellis B et al (2008) Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater Sci Eng C 28(1):171–178

    Article  CAS  Google Scholar 

  • Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  PubMed  CAS  Google Scholar 

  • Tesavibul P et al (2012) Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater Lett 74:81–84

    Article  CAS  Google Scholar 

  • Thavornyutikarn B et al (2014) Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Progress Biomat 3(2-4):61–102

    Article  Google Scholar 

  • Thomsen P et al (2009) Electron beam-melted, free-form-fabricated titanium alloy implants: material surface characterization and early bone response in rabbits. J Biomed Mater Res B Appl Biomater 90(1):35–44

    Article  PubMed  Google Scholar 

  • Tosun G, Tosun N (2012) Analysis of process parameters for porosity in porous NiTi implants. Mater Manuf Process 27(11):1184–1188

    Article  CAS  Google Scholar 

  • Tosun G et al (2009) A study on microstructure and porosity of NiTi alloy implants produced by SHS. J Alloys Compd 487(1):605–611

    Article  CAS  Google Scholar 

  • Tosun G et al (2012) Investigation of combustion channel in fabrication of porous NiTi alloy implants by SHS. Mater Lett 66(1):138–140

    Article  CAS  Google Scholar 

  • Traini T et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Travitzky N et al (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754

    Article  CAS  Google Scholar 

  • Vaezi M et al (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5-8):1721–1754

    Article  Google Scholar 

  • Van Bael S et al (2013) In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration. Mater Sci Eng C 33(6):3404–3412

    Article  CAS  Google Scholar 

  • van Hengel IA et al (2017) Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials 140:1–15

    Article  PubMed  CAS  Google Scholar 

  • Ventola CL (2014) Medical applications for 3D printing: current and projected uses. PT 39(10):704–711

    Google Scholar 

  • Verdiyeva G et al (2015) Tendon reconstruction with tissue engineering approach – a review. J Biomed Nanotechnol 11(9):1495–1523

    Article  PubMed  CAS  Google Scholar 

  • Vorndran E et al (2008) 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv Eng Mater 10(12):B67–B71

    Article  CAS  Google Scholar 

  • Vozzi G et al (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8(6):1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Vozzi G et al (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24(14):2533–2540

    Article  PubMed  CAS  Google Scholar 

  • Wang F et al (2004) Precision extruding deposition and characterization of cellular poly-ϵ-caprolactone tissue scaffolds. Rapid Prototyp J 10(1):42–49

    Article  Google Scholar 

  • Wang PY et al (2012) The roles of RGD and grooved topography in the adhesion, morphology, and differentiation of C2C12 skeletal myoblasts. Biotechnol Bioeng 109(8):2104–2115

    Article  PubMed  CAS  Google Scholar 

  • Wang L et al (2015) Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9):9167–9179

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B 110:442–458

    Article  CAS  Google Scholar 

  • Webb WR et al (2013) The application of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials 34(28):6683–6694

    Article  PubMed  CAS  Google Scholar 

  • Weinberger F, Mannhardt I, Eschenhagen T (2017) Engineering cardiac muscle tissue- a maturating field of research. Circ Res 120:1487–1500

    Article  PubMed  CAS  Google Scholar 

  • Weiß T et al (2009) Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng Life Sci 9(5):384–390

    Article  CAS  Google Scholar 

  • Weiß T et al (2011) Two-photon polymerization of biocompatible photopolymers for Microstructured 3D Biointerfaces. Adv Eng Mater 13(9):B264–B273

    Article  CAS  Google Scholar 

  • Williams JM et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  PubMed  CAS  Google Scholar 

  • Winkel A et al (2012) Sintering of 3D-printed glass/HAp composites. J Am Ceram Soc 95(11):3387–3393

    Article  CAS  Google Scholar 

  • Wiria F et al (2007) Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Wiria FE et al (2010) Printing of titanium implant prototype. Mater Des 31:S101–S105

    Article  CAS  Google Scholar 

  • Wohlers T, Gornet T (2014) History of additive manufacturing. Wohlers Report 24:2014

    Google Scholar 

  • Wong KV, Hernandez A (2012) International Scholarly Research Network. ISRN Mechanical Engineering 2012:10, https://doi.org/10.5402/2012/208760

  • Woodfield TB et al (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161

    Article  PubMed  CAS  Google Scholar 

  • Wu W, DeConinck A, Lewis J (2011) Omnidirectional printing of 3D microvascular networks. Adv Health Mat 23:178–183

    Article  CAS  Google Scholar 

  • Wu SH et al (2013) Porous Titanium-6 Aluminum-4 vanadium cage has better Osseointegration and less Micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs 37(12):E191–E201

    Article  PubMed  CAS  Google Scholar 

  • Wu Y et al (2015) Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering. J Biomed Mater Res B Appl Biomater 105:(3):616–627

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z et al (2001) Fabrication of porous poly (L-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater 45(7):773–779

    Article  CAS  Google Scholar 

  • Xiong Z et al (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776

    Article  CAS  Google Scholar 

  • Xu T et al (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    Article  PubMed  CAS  Google Scholar 

  • Xu T et al (2013a) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Article  PubMed  CAS  Google Scholar 

  • Xu Y et al (2013b) Fabrication of electrospun poly (L-Lactide-co-É›-Caprolactone)/collagen Nanoyarn network as a novel, three-dimensional, Macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods 19(12):925–936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang SS et al (2015) Fabrication of an osteochondral graft with using a solid freeform fabrication system. Tissue Eng Regener Med 12(4):239–248

    Article  CAS  Google Scholar 

  • Ye L et al (2010) Fabrication and biocompatibility of nano non-stoichiometric apatite and poly (ε-caprolactone) composite scaffold by using prototyping controlled process. J Mater Sci Mater Med 21(2):753–760

    Article  PubMed  CAS  Google Scholar 

  • Yen H-J et al (2008) Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng A 15(5):965–975

    Article  Google Scholar 

  • Yen H-J et al (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11(3):615–624

    Article  PubMed  CAS  Google Scholar 

  • Yeo M et al (2016) Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Biofabrication 8(3):035021

    Article  PubMed  CAS  Google Scholar 

  • Yildirim ED et al (2010) Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication 2(1):014109

    Article  PubMed  CAS  Google Scholar 

  • Zadpoor AA, Malda J (2017) Ann Biomed Eng 45:1, https://doi.org/10.1007/s10439-016-1719-y

  • Zhang H et al (2008) Microassembly fabrication of tissue engineering scaffolds with customized design. IEEE Trans Autom Sci Eng 5(3):446–456

    Article  Google Scholar 

  • Zhang Y et al (2009) In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering. J Biomed Mater Res A 91(4):1018–1027

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q et al (2013) In situ controlled release of rhBMP-2 in gelatin-coated 3D porous poly (ε-caprolactone) scaffolds for homogeneous bone tissue formation. Biomacromolecules 15(1):84–94

    Article  PubMed  CAS  Google Scholar 

  • Zhao S et al (2016) The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J Mech Behav Biomed Mater 59:251–264

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y et al (2007) In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites. Polym Int 56(3):333–342

    Article  CAS  Google Scholar 

  • Zhou X et al (2016) Improved human bone marrow mesenchymal stem cell osteogenesis in 3D Bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Sci Rep 6:12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Narayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Miar, S., Shafiee, A., Guda, T., Narayan, R. (2018). Additive Manufacturing for Tissue Engineering. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_2

Download citation

Publish with us

Policies and ethics