Skip to main content

Using Computer Technologies in Design and Technology Education: Teaching-Learning Process

  • Reference work entry
  • First Online:
Book cover Handbook of Technology Education

Part of the book series: Springer International Handbooks of Education ((SIHE))

Abstract

Design and technology education has a long tradition of using ICT applications. The development of digital technologies amplifies this use and opens many new pedagogical plans. In this chapter, we study this particular domain through, on one hand, an analysis and the design of controlled or automated systems and, on the other hand, the use of computer-aided design and computer-aided manufacturing in pedagogical situations. Both of these domains are plentiful for meaningful situations related to the modern environment – for the students’ familiar environment and also for discovering and knowing the world of contemporary industry. Thus, we discuss, with the aim of understanding in design and technology education, examining what the use of these digital technologies introduce to and modify in students’ learning. This paper is based on two studies: (1) the first one concerns the understanding developed by students of a complex automated system in the aim to program its different controls and (2) the second one is based on the use of CAD software. We examine the learning process in the framework of the theory of activity and the anthropological analysis, based on the individuation and socialization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouelala, M., Taha Janan, M., & Brandt-Pomares, P. (2013, November 4–6). CAMs learning modeling in education towards a methodology for software choice. Paper presented at the London International Conference on Education (LICE-2013), London.

    Google Scholar 

  • Akın, H. L., Meriçli, Ç., & Meriçli, T. (2013). Introduction to autonomous mobile robotics using Lego Mindstorms NXT. Computer Science Education, 23(4), 368–386. doi:10.1080/08993408.2013.838066.

    Article  Google Scholar 

  • Balat, G. U., Dagal, A. B., & Kanburoglu, V. (2015). The effect of computer aided education program on the development of concept in 48–60 months children. In A. Isman (Ed.), International educational technology conference, IETC 2014 (Vol. 176, pp. 20–26). (Coll. Procedia Social and Behavioral Sciences).

    Google Scholar 

  • Bonnardel, N., & Zenasni, F. (2010). The impact of technology on creativity in design: An enhancement? Creativity and Innovation Management, 19(2), 180–191. doi:10.1111/j.1467-8691.2010.00560.x. URL: <Go to ISI>://WOS:000208219900010.

  • Bruner, J. S. (1997). Car la culture donne forme à l’esprit. De la révolution cognitive à la psychologie culturelle (173 p). Genève: Georges Eshel.

    Google Scholar 

  • Cannon, K., Lapoint, M. A., Bird, N., Panciera, K., Veeraraghavan, H., Papanikolopoulos, N., & Gini, M. (2007). Using robots to raise interest in technology among underrepresented groups – A technology day camp for women, African Americans, and Hispanics. IEEE Robotics & Automation Magazine, 14(2), 73–81. doi:10.1109/mra.2007.380640. URL: <Go to ISI>://WOS:000247833500011.

  • Chanquoy, L., Tricot, A., & Sweller, J. (2007). La charge cognitive, théorie et applications (293 pp). Paris: A. Colin.

    Google Scholar 

  • Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848–867.

    Article  Google Scholar 

  • Cygnaeus, U. (1910). Kirjoytukset. Helsinki: Kansanvalistusseura.

    Google Scholar 

  • Dewey, J. (1916). Democracy and education: An introduction to the philosophy of education (French traduction; (1990); Deledalle, G.; Démocratie et Éducation : introduction à la philosophie de l’éducation). Paris: Armand Colin.

    Google Scholar 

  • Fidan, I., & Baker, J. C. (2013, June 23–26). Designing the future: Integrating cutting-edge design and manufacturing tools into 9th and 10th grade STEM education. Paper presented at the Asee Annual Conference, Atlanta. ASEE Annual Conference & Exposition (pp. 1–10). Washington: ASEE. Retrieved from <Go to ISI>://WOS:000367454805034.

    Google Scholar 

  • Freinet, C. (1946). L’école moderne française. Paris: Editions Ophrys.

    Google Scholar 

  • Furat, M., & Eker, I. (2014). Computer-aided experimental modeling of a real system using graphical analysis of a step response data. Computer Applications in Engineering Education, 22(4), 571–582. doi:10.1002/cae.20482. URL: <Go to ISI>://WOS:000344185700001.

  • Ginestié, J. (2008a). From task to activity, a re-distribution of the roles between the teacher and the pupils. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge: Eleven studies in technology education (pp. 225–256). Rotterdam: Sense Publishers.

    Google Scholar 

  • Ginestié, J. (2008b). Konzepte einer Technischen Bildung in Frankreich (C. Vitale, Trans.) In E. Hartmann & W. Theuerkauf (Eds.), Allgemeine Technologie und Technische Bildung (pp. 107–125). Frankfurt am Main: Peter Lang.

    Google Scholar 

  • Ginestié, J. (2009). Thinking about technology education in France: A brief overview and some aspects of investigations (R. Watson, Trans.) In J. T. Alister & M. De Vries (Eds.), International handbook of research and development in technology Éducation (pp. 31–40). Rotterdam: Sense Publisher.

    Google Scholar 

  • Ginestié, J. (2010). From art and craft Éducation to design and technology Éducation: A thirty year story (R. Watson, Trans.) In A. Rasinen & T. Rissanen (Eds.), In the spirit of Uno Cygnaeus, pedagogical questions of today and tomorow (pp. 169–182). Jyväskylä: University of Jyväskylä.

    Google Scholar 

  • Ginestié, J. (2011). How pupils solve problems in technology Éducation and what they learn. In M. Barak & M. Hacker (Eds.), Fostering human development through engineering and technology education (pp. 171–190). Rotterdam: Sense publisher.

    Chapter  Google Scholar 

  • Gini, M. (1996). Designing and building autonomous minirobots. Computer Science Education, 7(2), 223–237. doi:10.1080/0899340960070207.

    Article  Google Scholar 

  • Goldberg, N., Aizikovitsh-Udi, E., & Levin, I. (2012). Children’s concept learning in solving logic problems. In L. G. Chova, I. C. Torres, & A. L. Martinez (Eds.), Edulearn12: 4th international conference on education and new learning technologies (pp. 6656–6661). Valenica: Iated-Int Assoc Technology Education a & Development. (Coll. EDULEARN Proceedings).

    Google Scholar 

  • Gregson, P. H., & Little, T. A. (1999). Using contests to teach design to EE juniors. IEEE Transactions on Education, 42(3), 229–232. doi:10.1109/13.779906. URL: <Go to ISI>://WOS:000081935700014.

  • Hamrita, T. K., Potter, W. D., & Bishop, B. (2005). Robotics, microcontroller and embedded systems education initiatives: An interdisciplinary approach. International Journal of Engineering Education, 21(4), 730–738. URL: <Go to ISI>://WOS:000232008100022.

    Google Scholar 

  • Hérold, J.-F. (2014). A cognitive analysis of students’ activity: An example in mathematics. Australian Journal of Teacher Education, 39(1), 137–158.

    Article  Google Scholar 

  • Hérold, J.-F., & Ginestié, J. (2011). Help with solving technological problems in project activities. International Journal of Technology and Design Education, 21, 55–70. doi:10.1007/s1007/s10798-009-9106-8. URL: http://rdcu.be/mIwj.

  • Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO training on pupils’ school performance in mathematics, problem solving ability and attitude: Swedish data. Educational Technology & Society, 9(3), 182–194. URL: <Go to ISI>://WOS:000239556500016.

    Google Scholar 

  • Johnson, M., Ozturk, E., Johnson, J., Yalvac, B., Peng, X. B., & Asee. (2012). AC 2012–3927: Assessing an adaptive expertise instrument in computer-aided design (cad) courses at two campuses 2012 Asee Annual Conference. (Coll. ASEE Annual Conference & Exposition).

    Google Scholar 

  • Kantor, G., Manikonda, V., Newman, A., & Tsakiris, D. P. (1996). Robotics for high school students in a university enviroment. Computer Science Education, 7(2), 257–278. doi:10.1080/0899340960070210. URL: http://dx.doi.org/10.1080/0899340960070210.

  • Khoroshko, L. L., & Sukhova, T. S. (2013, March 13–15). Application of computer aided design (CAD) systems for development of electronic educational courses for engineering disciplines in engineering higher educational institution. Paper presented at the IEEE Global Engineering Education Conference, Berlin. Educon: Proceedings of the IEEE Global Engineering Education Conference (pp. 644–647). Berlin: Tech Univ Berlin. Retrieved from <Go to ISI>://WOS:000327180400088.

    Google Scholar 

  • Klement, M., & Klementova, S. (2016). Benefits of the support of polytechnic education for non-technical schools students. In M. Minas (Ed.), Future academy multidisciplinary conference Iceepsy & Cpsyc & Icpsirs & Be-Ci (Vol. 217, pp. 149–159). (Coll. Procedia Social and Behavioral Sciences).

    Google Scholar 

  • Kurak Acici, F., & Sonmez, E. (2014). The place of hand drawing and computer aided design in interior design education. In H. Uzunboylu (Ed.), 3rd Cyprus international conference on educational research (Vol. 143, pp. 716–720). (Coll. Procedia Social and Behavioral Sciences).

    Google Scholar 

  • Laisney, P. (2012, Octobre 17). Conditions d’études en éducation technologique : l’usage de la CFAO avec des classes de collège. Doctorat, Under the direction of J. Ginestié & P. Brandt-Pomares, Document imprimé, Aix-Marseille Université, Marseille. Retrieved from http://www.theses.fr/2012AIXM3049

  • Laisney, P., & Brandt-Pomares, P. (2015). Role of graphics tools in the learning design process. International Journal of Technology and Design Education, 25(1), 109–119. doi:10.1007/s10798-014-9267-y. URL: http://dx.doi.org/10.1007/s10798-014-9267-y.

  • Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems? Computers & Education, 49(4), 1097–1111. doi:10.1016/j.compedu.2005.12.008. URL: <Go to ISI>://WOS:000250024100009.

  • Liu, A. S., Kallai, A. Y., Schunn, C. D., & Fiez, J. A. (2015). Using mental computation training to improve complex mathematical performance. Instructional Science, 43(4), 463–485. doi:10.1007/s11251-015-9350-0. URL: <Go to ISI>://WOS:000355144600002.

  • Liu, A. S., Schunn, C. D., Flot, J., & Shoop, R. (2013). The role of physicality in rich programming environments. Computer Science Education, 23(4), 315–331. doi:10.1080/08993408.2013.847165. URL: http://dx.doi.org/10.1080/08993408.2013.847165.

  • Mayer, R. E. (2008). Learning and instruction. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • McCartney, R. (1996). Introduction to robotics in computer science and engineering education. Computer Science Education, 7(2), 135–137. doi:10.1080/0899340960070201. URL: http://dx.doi.org/10.1080/0899340960070201.

  • McCartney, R., & Sanders, K. E. (1998). Small robot projects: Before you start. Computer Science Education, 8(1), 56–63. doi:10.1076/csed.8.1.56.3821. URL: http://www.tandfonline.com/doi/abs/10.1076/csed.8.1.56.3821.

  • McNair, L. D., Davitt, M., & Batten, G. P. (2015). Outside the ‘comfort zone’: Impacts of interdisciplinary research collaboration on research, pedagogy, and disciplinary knowledge production. Engineering Studies, 7(1), 47–79. doi:10.1080/19378629.2015.1014817. URL: <Go to ISI>://WOS:000353013500003.

  • Mioduser, D., & Levin, I. (1996). Cognitive-conceptual model for integrating robotics and control into the curriculum. Computer Science Education, 7(2), 199–210. doi:10.1080/0899340960070205. URL: http://dx.doi.org/10.1080/0899340960070205.

  • Montessori, M. (1912). Scientific pedagogy as applied to child education in the chlidren’s houses (A. E. George, Trans.). New-York: Frederick A. Stokes Company.

    Google Scholar 

  • Moseley, B., & Broiles, K. (2012). Automation strategies and project life cycle documentation in the instructional system design process. 5th International Conference of Education, Research and Innovation (Iceri 2012) (pp. 5210–5216). URL: <Go to ISI>://WOS:000318422205034.

    Google Scholar 

  • Musial, M., & Tricot, A. (2008). Enseigner pour que les élèves apprennent. 2) le modèle « Enseigner pour que les élèves apprennent ». Technologie STI, 158, 22–33.

    Google Scholar 

  • Nicholas, H., & Ng, W. (2012). Factors influencing the uptake of a mechatronics curriculum initiative in five Australian secondary schools. International Journal of Technology and Design Education, 22(1), 65–90. doi:10.1007/s10798-010-9138-0. URL: <Go to ISI>://WOS:000298810500005.

  • Ozbek, N. S., & Eker, I. (2015). An interactive computer-aided instructional strategy and assessment methods for system identification and adaptive control laboratory. IEEE Transactions on Education, 58(4), 297–302. doi:10.1109/te.2015.2412512. URL: <Go to ISI>://WOS:000369513400012.

  • Piaget, J. (1947). La Représentation du monde chez l’enfant (Nouvelle ed.,Vol. XLIV, 425 p). Paris: Presses universitaires de France.

    Google Scholar 

  • Rabardel, P. (2000). Influence of the development of knowledge systems and technological systems on cognition. International Journal of Psychology, 35(3–4), 274–274. URL: <Go to ISI>://WOS:000088388802683.

    Google Scholar 

  • Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15(5), 665–691. doi:10.1016/s0953-5438(03)00058-4. URL: <Go to ISI>://WOS:000186220800003.

  • Rivera-Solorio, C., Garcia-Cuellar, A. J., & Flores, A. (2013). Design and construction of a boat powered by solar energy with the aid of computational tools. International Journal of Engineering Education, 29(2), 380–387. URL: <Go to ISI>://WOS:000329810700011.

    Google Scholar 

  • Shafat, G., Levin, I., & Ieee. (2014). Recognition, reconstruction and fault identification problems in Boolean concepts learning. In 10th European workshop on microelectronics education (Ewme) (pp. 155–160). URL: <Go to ISI>://WOS:000345757100034.

    Google Scholar 

  • Simondon, G. (1989). Du mode d’existence des objets techniques (Réédition ed.). Paris: Aubier, (Coll. Collection l’invention philosophique).

    Google Scholar 

  • Simondon, G. (2005). L’individuation à la lumière des notions de forme et d’information (571 p). Grenoble: J. Millon, (Coll. Collection Krisis).

    Google Scholar 

  • Simondon, G. (2014). Sur la technique. Paris: PUF.

    Google Scholar 

  • Sobiesk, E., Gini, M., & Marin, J. A. (2007). Using group knowledge for multitarget terrain-based state estimation (117–126 p), (Coll. Distributed Autonomous Robotic Systems 6, Directed by R. alami, R. Chatila & H. Asama).

    Google Scholar 

  • Somyurek, S. (2015). An effective educational tool: Construction kits for fun and meaningful learning. International Journal of Technology and Design Education, 25(1), 25–41. doi:10.1007/s10798-014-9272-1. URL: <Go to ISI>://WOS:000348118900002

  • Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychological Review, 22, 123–138.

    Article  Google Scholar 

  • Sweller, J., & van Merriënboer, J. (2005). Cognitive load theory and complex learning: Recent developments and future direction. Educational Psychology Review, 17(2), 147–177.

    Article  Google Scholar 

  • Tricot, A., Pierre-Demarcy, C., & El Boussarghini, R. (2000). Specific help devices for educational hypermedia. Journal of Computer Assisted Learning, 16, 102–113.

    Article  Google Scholar 

  • Vygotski, L. S. (1962). Thought and language (Vol. xxi, 168 p). New York: Wiley.

    Google Scholar 

  • Vygotski, L. S. (1998). Child psychology (xv–359 pp). New York/Dordrecht/London: Kluwer Academic/Plenum publishers.

    Google Scholar 

  • Vygotski, L. S., & Piaget, J. (1997). Pensée et langage (536 p). Paris: la Dispute.

    Google Scholar 

  • Wallon, H. (1956, re-ed. 2007). Levels of ego fluctuation. Evolution Psychiatrique, 72(4), 607–617. doi:10.1016/j.evopsy.2007.10.012. URL: <Go to ISI>://WOS:000251928600006

  • Zeid, I., Chin, J., Duggan, C., & Kamarthi, S. (2014). Engineering based learning: A paradigm shift for high school STEM teaching. International Journal of Engineering Education, 30(4), 876–887. URL: <Go to ISI>://WOS:000347457200011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Ginestié .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Ginestié, J. (2018). Using Computer Technologies in Design and Technology Education: Teaching-Learning Process. In: de Vries, M. (eds) Handbook of Technology Education. Springer International Handbooks of Education. Springer, Cham. https://doi.org/10.1007/978-3-319-44687-5_31

Download citation

Publish with us

Policies and ethics