Skip to main content

Water: Many-Body Potential from First Principles (From the Gas to the Liquid Phase)

  • Reference work entry
  • First Online:

Abstract

Computer simulations have become an integral part of the toolbox of any researcher interested in molecular sciences, often providing new insights that are difficult (if not impossible) to obtain by other means. However, the predictive power of a computer simulation directly depends on the level of realism that can be used to represent the molecular system of interest. Since the early times of computer simulations, the search for a molecular model of water capable of describing its unique properties across different phases has been the focus of intense research. The continued increase in computer power accompanied by advances in the design of efficient algorithms for correlated electronic structure calculations and tremendous progress in the representation of global potential energy surfaces have recently opened the doors to the development of molecular models rigorously derived from many-body expansions of interaction energies. By quantitatively reproducing individual interaction terms between molecules, it has been shown that these many-body potential energy functions can achieve unprecedented accuracy in computer simulations. This chapter provides an overview of the theoretical formalism underlying such many-body representations, with a particular focus on the performance of the MB-pol potential energy function in predicting the energetics as well as structural, thermodynamic, dynamical, and spectroscopic properties of water from the gas to the condensed phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Mostafa YS, Magdon-Ismail M, Lin H-T (2012) Learning from Data. AML Book

    Google Scholar 

  • Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  ADS  Google Scholar 

  • Adler TB, Knizia G, Werner HJ (2007) A simple and efficient CCSD(T)-F12 approximation. J Chem Phys 127:221106

    Article  ADS  Google Scholar 

  • Babin V, Medders GR, Paesani F (2012) Toward a universal water model: first principles simulations from the dimer to the liquid phase. J Phys Chem Lett 3:3765–3769

    Article  Google Scholar 

  • Babin V, Leforestier C, Paesani F (2013) Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput 9:5395–5403

    Article  Google Scholar 

  • Babin V, Medders GR, Paesani F (2014) Development of a “first principles” water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. J Chem Theory Comput 10:1599–1607

    Article  Google Scholar 

  • Bajaj P, Götz AW, Paesani F (2016) Toward chemical accuracy in the description of ion-water interactions through many-body representations. I. Halide-water dimer potential energy surfaces. J Chem Theory Comput 12:2698–2705

    Article  Google Scholar 

  • Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  Google Scholar 

  • Barker JA, Watts RO (1969) Structure of water; a Monte Carlo calculation. Chem Phys Lett 3:144–145

    Article  ADS  Google Scholar 

  • Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403

    Article  ADS  Google Scholar 

  • Bates DM, Tschumper GS (2009) CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures. J Phys Chem A 113:3555–3559

    Article  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  ADS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  ADS  Google Scholar 

  • Behler J (2016) Perspective: machine learning potentials for atomistic simulations. J Chem Phys 145:170901

    Article  ADS  Google Scholar 

  • Braams BJ, Bowman JM (2009) Permutationally invariant potential energy surfaces in high dimensionality. Int Rev Phys Chem 28:577–606

    Article  Google Scholar 

  • Brown SE, Götz AW, Cheng X, Steele RP, Mandelshtam VA et al (2017) Monitoring water clusters “melt” through vibrational spectroscopy. J Am Chem Soc 139:7082–7088

    Article  Google Scholar 

  • Bukowski R, Szalewicz K, Groenenboom GC, van der Avoird A (2007) Predictions of the properties of water from first principles. Science 315:1249–1252

    Article  ADS  Google Scholar 

  • Bukowski R, Szalewicz K, Groenenboom GC, van der Avoird A (2008) Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water. J Chem Phys 128:094314

    Article  ADS  Google Scholar 

  • Burnham CJ, Anick DJ, Mankoo PK, Reiter GF (2008) The vibrational proton potential in bulk liquid water and ice. J Chem Phys 128:154519

    Article  ADS  Google Scholar 

  • Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  Google Scholar 

  • Cheng XL, Steele RP (2014) Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates. J Chem Phys 141:104105

    Article  ADS  Google Scholar 

  • Cheng XL, Talbot JJ, Steele RP (2016) Tuning vibrational mode localization with frequency windowing. J Chem Phys 145:124112

    Article  ADS  Google Scholar 

  • Cisneros GA, Piquemal J-P, Darden TA (2006) Quantum mechanics/molecular mechanics electrostatic embedding with continuous and discrete functions. J Phys Chem B 110:13682–13684

    Article  Google Scholar 

  • Cisneros GA, Elking D, Piquemal J-P, Darden TA (2007) Numerical fitting of molecular properties to Hermite gaussians. J Phys Chem A 111:12049–12056

    Article  Google Scholar 

  • Cisneros GA, Wikfeldt KT, Ojamae L, Lu JB, Xu Y et al (2016) Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem Rev 116:7501–7528

    Article  Google Scholar 

  • Cole WTS, Farrell JD, Wales DJ, Saykally RJ (2016) Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 mu m. Science 352:1194–1197

    Article  ADS  Google Scholar 

  • Dunning TH (1989) Gaussian-basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  ADS  Google Scholar 

  • Eisenberg D, Kauzmann W (1969) The structure and properties of water. Oxford University Press, Oxford

    Google Scholar 

  • Evans MW, Refson K, Swamy KN, Lie GC, Clementi E (1987) Molecular dynamics simulation of liquid water with an ab initio flexible water-water interaction potential. 2. The effect of internal vibrations on the time correlation functions. Phys Rev A 36:3935–3942

    Article  ADS  Google Scholar 

  • Fanourgakis GS, Xantheas SS (2008) Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J Chem Phys 128:074506

    Article  ADS  Google Scholar 

  • Frank HS, Wen WY (1957) Structural aspects of ion-solvent interaction in aqueous solutions – a suggested picture of water structure. Discuss Faraday Soc 24:133–140

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  • Gao JL, Truhlar DG, Wang YJ, Mazack MJM, Loffler P et al (2014) Explicit polarization: a quantum mechanical framework for developing next generation force fields. Acc Chem Res 47:2837–2845

    Article  Google Scholar 

  • Gillan MJ, Alfè D, Michaelides A (2016) Perspective: how good is DFT for water? J Chem Phys 144:130901

    Article  ADS  Google Scholar 

  • Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  Google Scholar 

  • Gora U, Podeszwa R, Cencek W, Szalewicz K (2011) Interaction energies of large clusters from many-body expansion. J Chem Phys 135:224102

    Article  ADS  Google Scholar 

  • Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  ADS  Google Scholar 

  • Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101:219–260

    Article  Google Scholar 

  • Halkier A, Helgaker T, Jorgensen P, Klopper W, Olsen J (1999a) Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem Phys Lett 302:437–446

    Article  ADS  Google Scholar 

  • Halkier A, Klopper W, Helgaker T, Jorgensen P, Taylor PR (1999b) Basis set convergence of the interaction energy of hydrogen-bonded complexes. J Chem Phys 111:9157–9167

    Article  ADS  Google Scholar 

  • Handley CM, Hawe GI, Kell DB, Popelier PLA (2009) Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning. Phys Chem Chem Phys 11:6365–6376

    Article  Google Scholar 

  • Hankins D, Moskowitz JW, Stillinger FH (1970) Water molecule interactions. J Chem Phys 53:4544

    Article  ADS  Google Scholar 

  • Hasegawa T, Tanimura Y (2011) A polarizable water model for intramolecular and intermolecular vibrational spectroscopies. J Phys Chem B 115:5545–5553

    Article  Google Scholar 

  • Howard JC, Gray JL, Hardwick AJ, Nguyen LT, Tschumper GS (2014) Getting down to the fundamentals of hydrogen bonding: anharmonic vibrational frequencies of (HF)2 and (H2O)2 from ab initio electronic structure computations. J Chem Theory Comput 10:5426–5435

    Article  Google Scholar 

  • Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J Phys Chem A 111:8753–8765

    Article  Google Scholar 

  • Khaliullin RZ, Bell AT, Head-Gordon M (2008) Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals. J Chem Phys 128:184112

    Article  ADS  Google Scholar 

  • Knizia G, Adler TB, Werner HJ (2009) Simplified CCSD(T)-F12 methods: theory and benchmarks. J Chem Phys 130:054104

    Article  ADS  Google Scholar 

  • Manna D, Kesharwani MK, Sylvetsky N, Martin JML (2017) Conventional and explicitly correlated ab initio benchmark study on water clusters: revision of the BEGDB and WATER27 data sets. J Chem Theory Comput 13:3136–3152

    Article  Google Scholar 

  • Mardirossian N, Head-Gordon M (2015) Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. J Chem Phys 142:074111

    Article  ADS  Google Scholar 

  • Maréchal Y (2007) The hydrogen bond and the water molecule: the physics and chemistry of water, aqueous and bio media. Elsevier, Amsterdam

    Google Scholar 

  • Matsuoka O, Clementi E, Yoshimine M (1976) CI study of the water dimer potential surface. J Chem Phys 64:1351–1361

    Article  ADS  Google Scholar 

  • Medders GR, Paesani F (2013) Many-body convergence of the electrostatic properties of water. J Chem Theory Comput 9:4844–4852

    Article  Google Scholar 

  • Medders GR, Paesani F (2015) Infrared and Raman spectroscopy of liquid water through “first-principles” many-body molecular dynamics. J Chem Theory Comput 11:1145–1154

    Article  Google Scholar 

  • Medders GR, Paesani F (2016) Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum. J Am Chem Soc 138:3912–3919

    Article  Google Scholar 

  • Medders GR, Babin V, Paesani F (2014) Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties. J Chem Theory Comput 10:2906–2910

    Article  Google Scholar 

  • Medders GR, Götz AW, Morales MA, Bajaj P, Paesani F (2015) On the representation of many-body interactions in water. J Chem Phys 143:104102

    Article  ADS  Google Scholar 

  • Moberg DR, Straight SC, Knight C, Paesani F (2017) Molecular origin of the vibrational structure of ice Ih. J Phys Chem Lett 8:2579–2583

    Article  Google Scholar 

  • Moberg DR, Straight SC, Paesani F et al (2018) Temperature dependence of the air/water interface revealed by polarization sensitive sum-frequency generation spectroscopy. J. Phys. Chem. B 122:4356–4365

    Google Scholar 

  • Morales MA, Gergely JR, McMinis J, McMahon JM, Kim J et al (2014) Quantum Monte Carlo benchmark of exchange-correlation functionals for bulk water. J Chem Theory Comput 10:2355–2362

    Article  Google Scholar 

  • Niesar U, Corongiu G, Clementi E, Kneller GR, Bhattacharya DK (1990) Molecular dynamics simulations of liquid water using the NCC ab initio potential. J Phys Chem 94:7949–7956

    Article  Google Scholar 

  • Paesani F (2016) Getting the right answers for the right reasons: toward predictive molecular simulations of water with many-body potential energy functions. Acc Chem Res 49:1844–1851

    Article  Google Scholar 

  • Paesani F, Voth GA (2010) A quantitative assessment of the accuracy of centroid molecular dynamics for the calculation of the infrared spectrum of liquid water. J Chem Phys 132:014105

    Article  ADS  Google Scholar 

  • Partridge H, Schwenke DW (1997) The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J Chem Phys 106:4618–4639

    Article  ADS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  ADS  Google Scholar 

  • Peterson KA, Adler TB, Werner HJ (2008) Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. J Chem Phys 128:084102

    Article  ADS  Google Scholar 

  • Pham CH, Reddy SK, Chen K, Knight C, Paesani F (2017) Many-body interactions in ice. J Chem Theory Comput 13:1778–1784

    Article  Google Scholar 

  • Piquemal JP, Cisneros GA, Reinhardt P, Gresh N, Darden TA (2006) Towards a force field based on density fitting. J Chem Phys 124:104101

    Article  ADS  Google Scholar 

  • Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55:3336

    Article  ADS  Google Scholar 

  • Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105

    Article  ADS  Google Scholar 

  • Reddy SK, Straight SC, Bajaj P, Pham CH, Riera M et al (2016) On the accuracy of the MB-pol many-body potential for water: interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. J Chem Phys 145:194504

    Article  ADS  Google Scholar 

  • Reddy SK, Moberg DR, Straight SC, Paesani F (2017) Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function. J Chem Phys 147:244504

    Article  ADS  Google Scholar 

  • Ren PY, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947

    Article  Google Scholar 

  • Rezac J, Hobza P (2013) Describing noncovalent interactions beyond the common approximations: how accurate is the “gold standard,” CCSD(T) at the complete basis set limit? J Chem Theory Comput 9:2151–2155

    Article  Google Scholar 

  • Richardson JO, Perez C, Lobsiger S, Reid AA, Temelso B et al (2016) Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351:1310–1313

    Article  ADS  Google Scholar 

  • Riera M, Mardirossian N, Bajaj P, Götz AW, Paesani F (2017) Toward chemical accuracy in the description of ion-water interactions through many-body representations. Alkali-water dimer potential energy surfaces. J Chem Phys 147:161715

    Article  ADS  Google Scholar 

  • Rossi M, Liu HC, Paesani F, Bowman J, Ceriotti M (2014) Communication: on the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase. J Chem Phys 141:181101

    Article  ADS  Google Scholar 

  • Shao YH, Gan ZT, Epifanovsky E, Gilbert ATB, Wormit M et al (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113:184–215

    Article  ADS  Google Scholar 

  • Shvab I, Sadus RJ (2016) Atomistic water models: aqueous thermodynamic properties from ambient to supercritical conditions. Fluid Phase Equilib 407:7–30

    Article  Google Scholar 

  • Simova L, Rezac J, Hobza P (2013) Convergence of the interaction energies in noncovalent complexes in the coupled-cluster methods up to full configuration interaction. J Chem Theory Comput 9:3420–3428

    Article  Google Scholar 

  • Skinner LB, Huang CC, Schlesinger D, Pettersson LGM, Nilsson A et al (2013) Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J Chem Phys 138:074506

    Article  ADS  Google Scholar 

  • Sode O, Cherry JN (2017) Development of a flexible-monomer two-body carbon dioxide potential and its application to clusters up to (CO2)13. J Comput Chem 38:2763–2774

    Article  Google Scholar 

  • Soper AK, Benmore CJ (2008) Quantum differences between heavy and light water. Phys Rev Lett 101:065502

    Article  ADS  Google Scholar 

  • Stone AJ (1997) The theory of intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  • Straight SC, Paesani F (2016) Exploring electrostatic effects on the hydrogen bond network of liquid water through many-body molecular dynamics. J Phys Chem B 120:8539–8546

    Article  Google Scholar 

  • Sun JW, Ruzsinszky A, Perdew JP (2015) Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 115:036402

    Article  ADS  Google Scholar 

  • Tao FM, Pan YK (1992) Moller-Plesset perturbation investigation of the He2 potential and the role of midbond basis functions. J Chem Phys 97:4989–4995

    Article  ADS  Google Scholar 

  • Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  ADS  Google Scholar 

  • Temelso B, Archer KA, Shields GC (2011) Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J Phys Chem A 115:12034–12046

    Article  Google Scholar 

  • Thole BT (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59:341–350

    Article  Google Scholar 

  • Torheyden M, Jansen G (2006) A new potential energy surface for the water dimer obtained from separate fits of ab initio electrostatic, induction, dispersion and exchange energy contributions. Mol Phys 104:2101–2138

    Article  ADS  Google Scholar 

  • Tuckerman ME (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, Oxford

    MATH  Google Scholar 

  • van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole's model revisited. J Phys Chem A 102:2399–2407

    Article  Google Scholar 

  • Vega C, Abascal JLF (2011) Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys 13:19663–19688

    Article  Google Scholar 

  • Voth GA (1996) Path-integral centroid methods in quantum statistical mechanics and dynamics. Adv Chem Phys 93:135–218

    Google Scholar 

  • Vydrov OA, Van Voorhis T (2010) Nonlocal van der Waals density functional: the simpler the better. J Chem Phys 133:244103

    Article  ADS  Google Scholar 

  • Wang LP, Head-Gordon T, Ponder JW, Ren P, Chodera JD et al (2013) Systematic improvement of a classical molecular model of water. J Phys Chem B 117:9956–9972

    Article  Google Scholar 

  • Wang QK, Bowman JM (2017) Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO@(HO), and VSCF/VCI vibrational analyses of both. J Chem Phys 147:161714

    Article  ADS  Google Scholar 

  • Wang YM, Bowman JM (2011) Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters. J Chem Phys 134:154510

    Article  ADS  Google Scholar 

  • Wang YM, Huang XC, Shepler BC, Braams BJ, Bowman JM (2011) Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer. J Chem Phys 134:094509

    Article  ADS  Google Scholar 

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  Google Scholar 

  • Witt A, Ivanov SD, Shiga M, Forbert H, Marx D (2009) On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy. J Chem Phys 130:194510

    Article  ADS  Google Scholar 

  • Zhang YK, Yang WT (1998) Comment on “generalized gradient approximation made simple”. Phys Rev Lett 80:890

    Article  ADS  Google Scholar 

  • Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation through Grants CHE-1453204, ACI-1642336, and ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paesani .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paesani, F. (2020). Water: Many-Body Potential from First Principles (From the Gas to the Liquid Phase). In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_55

Download citation

Publish with us

Policies and ethics