Skip to main content

Pump-Probe Photoelectron Spectra

  • Reference work entry
  • First Online:
Handbook of Materials Modeling
  • 3098 Accesses

Abstract

Pump-probe photoelectron spectroscopy provides a tool to observe excitations taking place in electronic systems as they evolve in time. This technique is frequently applied to study complex phenomena taking place in chemistry and solid-state physics. To properly capture the dynamics observed in the experiments, one needs to employ non-perturbative theories capable to describe the complete time evolution of large physical systems. After a pedagogical survey on the literature, in this chapter, we focus on TDDFT and illustrate how this theory can be formulated in a way that can capture the entire ionization dynamics in atoms, molecules, and solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade X, Strubbe D, De Giovannini U, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete MJ, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques MAL, Rubio A (2015) Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17(47):31371–31396

    Article  Google Scholar 

  • Bachau H, Cormier E, Decleva P, Hansen JE, Martín F (2001) Applications of B-splines in atomic and molecular physics. Rep Prog Phys 64(12):1815

    Article  ADS  Google Scholar 

  • Blaga CI, Catoire F, Colosimo P, Paulus GG, Muller HG, Agostini P, Dimauro LF (2009) Strong-field photoionization revisited. Nat Phys 5(5):335

    Article  Google Scholar 

  • Castro A, Marques MAL, Rubio A (2004) Propagators for the time-dependent Kohn–Sham equations. J Chem Phys 121(8):3425

    Article  ADS  Google Scholar 

  • Catoire F, Bachau H (2012) Extraction of the absolute value of the photoelectron spectrum probability density by means of the resolvent technique. Phys Rev A 85(2):138

    Article  Google Scholar 

  • Crawford-Uranga A, De Giovannini U, Mowbray DJ, Kurth S, Rubio A (2014) Modelling the effect of nuclear motion on the attosecond time-resolved photoelectron spectra of ethylene. J Phys B-At Mol Opt 47(12):124018

    Article  ADS  Google Scholar 

  • Damascelli A, Hussain Z, Shen ZX (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys 75(2):473

    Article  ADS  Google Scholar 

  • De Giovannini U, Brunetto G, Brunetto G, Castro A, Walkenhorst J, Walkenhorst J, Rubio A (2013) Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory. Chem Phys Chem 14(7):1363–1376

    Article  Google Scholar 

  • De Giovannini U, Larsen AH, Rubio A (2015) Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries. Eur Phys J B 88(3):1

    Article  Google Scholar 

  • De Giovannini U, Hübener H, Rubio A (2016) Monitoring electron-photon dressing in WSe2. Nano Lett 16:7993

    Article  ADS  Google Scholar 

  • De Giovannini U, Hübener H, Rubio A (2017) A first-principles time-dependent density functional theory framework for spin and time-resolved angular-resolved photoelectron spectroscopy in periodic systems. J Chem Theory Comput 13:265

    Article  Google Scholar 

  • Hsieh D, Basov DN, Averitt RD (2017) Towards properties on demand in quantum materials. Nat Mater 16(11):1077

    Article  ADS  Google Scholar 

  • Kadanoff LP, Baym G (1962) Quantum statistical mechanics. W. A. Benjamin, New York

    MATH  Google Scholar 

  • Krausz F, Stockman MI (2014) Attosecond metrology: from electron capture to future signal processing. Nat Photon 8(3):205

    Article  ADS  Google Scholar 

  • Legrand C, Suraud E, Reinhard PG (2002) Comparison of self-interaction-corrections for metal clusters. J Phys B-At Mol Opt 35(4):1115

    Article  ADS  Google Scholar 

  • Lépine F, Ivanov MY, Ivanov MY, Vrakking MJJ, Vrakking MJJ (2014) Attosecond molecular dynamics: fact or fiction? Nat Photon 8(3):195

    Article  ADS  Google Scholar 

  • Pendry JB (1990) Low-energy electron diffraction. In: Bortolani V, March NH, Tosi MP (eds) Interaction of atoms and molecules with solid surfaces. Phys of Solids Liq. Springer, Boston

    Google Scholar 

  • Perfetto E, Sangalli D, Marini A, Stefanucci G (2016a) First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra. Phys Rev B 94(24):245303

    Article  ADS  Google Scholar 

  • Perfetto E, Uimonen AM, van Leeuwen R, Stefanucci G (2016b) Time-resolved photoabsorption in finite systems: a first-principles NEGF approach. J Phys Conf Ser 696(1):012004

    Article  Google Scholar 

  • Puschnig P, Berkebile S, Fleming AJ, Koller G, Emtsev K, Seyller T, Riley JD, Ambrosch-Draxl C, Netzer FP, Ramsey MG (2009) Reconstruction of molecular orbital densities from photoemission data. Science 326(5953):702

    Article  ADS  Google Scholar 

  • Stolow A, Bragg AE, Neumark DM (2004) Femtosecond time-resolved photoelectron spectroscopy. Chem Rev 104(4):1719

    Article  Google Scholar 

  • Tao L, Scrinzi A (2012) Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method. New J Phys 14(1):013021

    Article  Google Scholar 

  • Wopperer P, De Giovannini U, Rubio A (2017) Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT. Eur Phys J B 90(3):1307

    Article  Google Scholar 

  • Wu G, Hockett P, Stolow A (2011) Time-resolved photoelectron spectroscopy : from wavepackets to observables. Phys Chem Chem Phys 13(41):18447

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT578-13), and the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreements no. 676580 (NOMAD) and 646259 (MOSTOPHOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto De Giovannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Giovannini, U. (2020). Pump-Probe Photoelectron Spectra. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_5

Download citation

Publish with us

Policies and ethics