Skip to main content

Mathematical Foundations of Accelerated Molecular Dynamics Methods

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

The objective of this review chapter is to present recent results on the mathematical analysis of the accelerated dynamics algorithms introduced by A.F. Voter in collaboration with D. Perez and M. Sorensen. Using the notion of quasi-stationary distribution, one is able to rigorously justify the fact that the exit event from a metastable state for the Langevin or overdamped Langevin dynamics can be modeled by a kinetic Monte Carlo model. Moreover, under some geometric assumptions, one can prove that this kinetic Monte Carlo model can be parameterized using Eyring-Kramers formulas. These are the building blocks required to analyze the accelerated dynamics algorithms, to understand their efficiency and their accuracy, and to improve and generalize these techniques beyond their original scope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen R, Warren P, ten Wolde P (2005) Sampling rare switching events in biochemical networks. Phys Rev Lett 94(1):018104

    Article  ADS  Google Scholar 

  • Aristoff D, Lelièvre T (2014) Mathematical analysis of temperature accelerated dynamics. SIAM Multiscale Model Simul 12(1):290–317

    Article  MathSciNet  MATH  Google Scholar 

  • Aristoff D, Lelièvre T, Simpson G (2014) The parallel replica method for simulating long trajectories of markov chains. AMRX 2:332–352

    MathSciNet  MATH  Google Scholar 

  • Bal K, Neyts E (2015) Merging metadynamics into hyperdynamics: accelerated molecular simulations reaching time scales from microseconds to seconds. J Chem Theory Comput 11(10):4545–4554

    Article  Google Scholar 

  • Binder A, Simpson G, Lelièvre T (2015) A generalized parallel replica dynamics. J Comput Phys 284:595–616

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bovier A, Eckhoff M, Gayrard V, Klein M (2004) Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J Eur Math Soc (JEMS) 6:399–424

    Article  MATH  Google Scholar 

  • Bovier A, Gayrard V, Klein M (2005) Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J Eur Math Soc (JEMS) 7:69–99

    Article  MATH  Google Scholar 

  • Bowman G, Pande V, Noé F (Eds) (2014) An introduction to Markov state models and their application to long timescale molecular simulation. Springer, Dordrecht

    MATH  Google Scholar 

  • Cameron M (2014) Metastability, spectrum, and eigencurrents of the Lennard-Jones-38 network. J Chem Phys 141(18):184113

    Article  Google Scholar 

  • Cérou F, Guyader A, Lelièvre T, Pommier D (2011) A multiple replica approach to simulate reactive trajectories. J Chem Phys 134:054108

    Article  ADS  Google Scholar 

  • Collet P, Martínez S, San Martín J (2013) Quasi-Stationary Distributions. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Dellago C, Bolhuis P, Chandler D (1999) On the calculation of reaction rate constants in the transition path ensemble. J Chem Phys 110(14):6617–6625

    Article  ADS  Google Scholar 

  • Di Gesù G, Le Peutrec D, Lelièvre T, Nectoux B (2017) Precise asymptotics of the first exit point density. https://arxiv.org/abs/1706.08728

  • Dickson B (2017) Overfill protection and hyperdynamics in adaptively biased simulations. J Chem Theory Comput 13(12):5925–5932

    Article  Google Scholar 

  • Eckhoff M (2005) Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime. Ann Probab 33(1):244–299

    Article  MathSciNet  MATH  Google Scholar 

  • Faradjian A, Elber R (2004) Computing time scales from reaction coordinates by milestoning. J Chem Phys 120(23):10880–10889

    Article  ADS  Google Scholar 

  • Ferrari P, Maric N (2007) Quasi-stationary distributions and Fleming-Viot processes in countable spaces. Electron J Probab 12(24):684–702

    Article  MathSciNet  MATH  Google Scholar 

  • Freidlin M, Wentzell A (1984) Random perturbations of dynamical systems. Springer, New York

    Book  MATH  Google Scholar 

  • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472

    Article  MATH  Google Scholar 

  • Hänggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Mod Phys 62(2):251–342

    Article  ADS  MathSciNet  Google Scholar 

  • Helffer B, Nier F (2006) Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mémoire de la société mathématique de France 105:1–89

    Article  MATH  Google Scholar 

  • Helffer B, Sjöstrand J (1984) Multiple wells in the semi-classical limit I. Commun Partial Diff Equ 9(4):337–408

    Article  MATH  Google Scholar 

  • Helffer B, Klein M, Nier F (2004) Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat Contemp 26:41–85

    MathSciNet  MATH  Google Scholar 

  • Hérau F, Hitrik M, Sjöstrand J (2011) Tunnel effect and symmetries for Kramers-Fokker-Planck type operators. J Inst Math Jussieu 10(3):567–634

    Article  MathSciNet  MATH  Google Scholar 

  • Kim S, Perez D, Voter AF (2013) Local hyperdynamics. J Chem Phys 139(14):144110

    Article  ADS  Google Scholar 

  • Kramers H (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kum O, Dickson B, Stuart S, Uberuaga B, Voter AF (2004) Parallel replica dynamics with a heterogeneous distribution of barriers: application to n-hexadecane pyrolysis. J Chem Phys 121:9808–9819

    Article  ADS  Google Scholar 

  • Le Bris C, Lelièvre T, Luskin M, Perez D (2012) A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl 18(2):119–146

    MathSciNet  MATH  Google Scholar 

  • Le Peutrec D (2010) Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian. Ann Fac Sci Toulouse Math (6) 19(3–4):735–809

    Article  MathSciNet  MATH  Google Scholar 

  • Lelièvre T, Nier F (2015) Low temperature asymptotics for quasi-stationary distributions in a bounded domain. Anal PDE 8(3):561–628

    Article  MathSciNet  MATH  Google Scholar 

  • Lelièvre T, Rousset M, Stoltz G (2010) Free energy computations: a mathematical perspective. Imperial College Press, UK

    Book  MATH  Google Scholar 

  • Maier R, Stein D (1993) Escape problem for irreversible systems. Phys Rev E 48:931–938

    Article  ADS  Google Scholar 

  • Miron R, Fichthorn K (2003) Accelerated molecular dynamics with the bond-boost method. J Chem Phys 119(12):6210–6216

    Article  ADS  Google Scholar 

  • Nier F (2018) Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries, vol 252. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Perez D, Cubuk E, Waterland A, Kaxiras E, Voter AF (2015a) Long-time dynamics through parallel trajectory splicing. J Chem Theory Comput 12(1):18–28

    Article  Google Scholar 

  • Perez D, Uberuaga B, Voter AF (2015b) The parallel replica dynamics method – coming of age. Comput Mater Sci 100:90–103

    Article  Google Scholar 

  • Schütte C, Sarich M (2013) Metastability and Markov state models in molecular dynamics. Courant lecture notes, vol 24. American Mathematical Society, Providence

    Google Scholar 

  • Schütte C, Noé F, Lu J, Sarich M, Vanden-Eijnden E (2011) Markov state models based on milestoning. J Chem Phys 134(20):204105

    Article  ADS  Google Scholar 

  • Simon B (1984) Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann Math 120: 89–118

    Article  MathSciNet  MATH  Google Scholar 

  • Sørensen M, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112(21):9599–9606

    Article  ADS  Google Scholar 

  • Tiwary P, Parrinello M (2013) From metadynamics to dynamics. Phys Rev Lett 111(23):230602

    Article  ADS  Google Scholar 

  • van Erp T, Moroni D, Bolhuis P (2003) A novel path sampling method for the calculation of rate constants. J Chem Phys 118(17):7762–7774

    Article  ADS  Google Scholar 

  • Vanden-Eijnden E, Venturoli M, Ciccotti G, Elber R (2008) On the assumptions underlying milestoning. J Chem Phys 129(17):174102

    Article  ADS  Google Scholar 

  • Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677

    Article  ADS  Google Scholar 

  • Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57(22): R13985

    Article  ADS  Google Scholar 

  • Voter AF (2007) Introduction to the kinetic Monte Carlo method. In: Sickafus KE, Kotomin EA, BP Uberuaga (eds) Radiation effects in solids. Springer/NATO Publishing Unit, Netherlands, pp. 1–23

    Google Scholar 

  • Wales D (2003) Energy landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang T, Plechac P, Aristoff D (2018) Stationary averaging for multi-scale continuous time Markov chains using parallel replica dynamics. Multiscale Model. Simul., 16:1–27. https://epubs.siam.org/doi/10.1137/16M1108716

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement number 614492. Part of this work was completed during the long programs “Large deviation theory in statistical physics: Recent advances and future challenges” at the International Centre for Theoretical Sciences (Bangalore) and “Complex High-Dimensional Energy Landscapes” at the Institute for Pure and Applied Mathematics (UCLA). The author would like to thank ICTS and IPAM for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lelièvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lelièvre, T. (2020). Mathematical Foundations of Accelerated Molecular Dynamics Methods. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_27

Download citation

Publish with us

Policies and ethics