Skip to main content

Electrical Polarization and Orbital Magnetization: The Position Operator Tamed

  • Reference work entry
  • First Online:
Handbook of Materials Modeling
  • 3165 Accesses

Abstract

Macroscopic polarization P and magnetization M are the most fundamental concepts in textbook treatments of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years, both P and the orbital term in M evaded even a precise microscopic definition and severely challenged quantum mechanical calculations. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution in the bulk of a polarized crystal; analogously, the orbital term in M has nothing to do with the bulk current distribution. When a bounded sample is addressed, P and M can indeed be expressed in terms of charge and current distributions, but the boundary contributions are essential. The field has undergone a genuine revolution since the early 1990s. The modern theory of polarization, based on a Berry phase, is a mature topic since the late 1990s; it is now implemented in most first-principle electronic structure codes. Many calculations have addressed various phenomena (ferroelectricity, piezoelectricity, lattice dynamics, infrared spectra of liquid, and amorphous systems) in several materials and are in spectacular agreement with experiments; they have provided thorough understanding of the behavior of ferroelectric and piezoelectric materials. The modern theory of orbital magnetization started in 2005, but some fundamental issues are still in development at the time of writing (2017). Only a few first-principle calculations have appeared so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bianco R, Resta R (2013) Orbital magnetization as a local property. Phys Rev Lett 110:087202

    Article  ADS  Google Scholar 

  • Ceresoli D, Thonhauser T, Vanderbilt D, Resta R (2006) Orbital magnetization in crystalline solids: multi-band insulators, Chern insulators, and metals. Phys Rev B 74:024408

    Article  ADS  Google Scholar 

  • Ceresoli D, Gertsmann U, Seitsonen AP, Mauri F (2010a) First-principles theory of orbital magnetization. Phys Rev B 81:060409

    Article  ADS  Google Scholar 

  • Ceresoli D, Marzari N, Lopez NG, Thonhauser T (2010b) Ab initio converse NMR approach for pseudopotentials. Phys Rev B 81:184424

    Article  ADS  Google Scholar 

  • Chen W, Sharma M, Resta R, Galli G, Car R (2008) Role of dipolar correlations in the infrared spectra of water and ice. Phys Rev B 77:245114

    Article  ADS  Google Scholar 

  • Dabo I, Kozinsky IB, Singh-Miller NE, Marzari N (2008) Electrostatics in periodic boundary conditions and real-space corrections. Phys Rev B 77:115139

    Article  ADS  Google Scholar 

  • Debernardi A, Bernasconi M, Cardona M, Parrinello M (1997) Infrared absorption in amorphous silicon from ab initio molecular dynamics. Appl Phys Lett 71:2692–2694

    Article  ADS  Google Scholar 

  • Dzyaloshinskii IE (1960) On the magneto-electrical effect in antiferromagnets. Sov Phys JETP 10:628–629

    MathSciNet  Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1964) The Feynman lectures in physics. Addison Wesley, Reading. II-36-6

    Google Scholar 

  • Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall, New Jersey

    Google Scholar 

  • He LX, Vanderbilt D (2001) Exponential decay properties of Wannier functions and related quantities. Phys Rev Lett 86:5341–5344

    Article  ADS  Google Scholar 

  • King-Smith D, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 48:1651–1654

    Article  ADS  Google Scholar 

  • Kittel C (2005) Introduction to solid state physics. Wiley, Hoboken

    MATH  Google Scholar 

  • Kohn W (1964) Theory of the insulating state. Phys Rev 133:A171–A181

    Article  ADS  Google Scholar 

  • Kohn W (1996) Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett 76:3168–3171

    Article  ADS  Google Scholar 

  • Kornfeld H (1924) Die Berechnung elektrostatischer Potentiale und der Energie von Dipol- und Quadrupolgittern. Z Phys 22:27–43

    Article  ADS  Google Scholar 

  • Kudin KN, Car R, Resta R (2007) Quantization of the dipole moment and of the end charges in push-pull polymers. J Chem Phys 127:194902

    Article  ADS  Google Scholar 

  • Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  • Lopez MG, Vanderbilt D, Thonhauser T, Souza I (2012) Wannier-based calculation of the orbital magnetization in crystals. Phys Rev B 85:014435

    Article  ADS  Google Scholar 

  • Marrazzo A, Resta R (2016) Irrelevance of the boundary on the magnetization of metals. Phys Rev Lett 116:137201

    Article  ADS  Google Scholar 

  • Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865

    Article  ADS  Google Scholar 

  • Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D (2012) Maximally localized Wannier functions: theory and applications. Rev Mod Phys 84:1419–1475

    Article  ADS  Google Scholar 

  • Meyer AJP, Asch G (1961) Experimental g’ and g values of Fe, Co, Ni, and their alloys. J Appl Phys 32:S330

    Article  ADS  Google Scholar 

  • Neumann M (1983) Dipole moment fluctuation formulas in computer simulations of polar systems. Molec Phys 50:841–858

    Article  ADS  Google Scholar 

  • Niu Q, Thouless DJ (1984) Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J Phys A 17:2453–2462

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortiz G, Martin RM (1994) Macroscopic polarization as a geometric quantum phase: many-body formulation. Phys Rev B 49:14202–14210

    Article  ADS  Google Scholar 

  • Posternak M, Baldereschi A, Catellani A, Resta R (1990) Ab-initio study of the spontaneous polarization of pyroelectric BeO. Phys Rev Lett 64:1777–1780

    Article  ADS  Google Scholar 

  • Rabe KM, Ghosez Ph (2007) First-principle studies of ferroelectric oxides. In: Physics of ferroelectrics: a modern perspective. Topics in applied physics, vol 105. Springer, Berlin, pp 117–172

    Google Scholar 

  • Resta R (1992) Theory of the electric polarization in crystals. Ferroelectrics 136:51–55

    Article  Google Scholar 

  • Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899–915

    Article  ADS  Google Scholar 

  • Resta R (1998) Quantum mechanical position operator in extended systems. Phys Rev Lett 80:1800–1803

    Article  ADS  Google Scholar 

  • Resta R, Vanderbilt D (2007) Theory of polarization: a modern approach. In: Physics of ferroelectrics: a modern perspective. Topics in applied physics, vol 105. Springer, Berlin, pp 31–68

    Google Scholar 

  • Resta R (2010) Electrical polarization and orbital magnetization: the modern theories. J Phys Condens Matter 22:123201

    Article  ADS  Google Scholar 

  • Resta R (2018) Drude weight and superconducting weight. J Phys Condens Matter 30:414001

    Article  Google Scholar 

  • Silvestrelli PL, Bernasconi M, Parrinello M (1997) Ab initio infrared spectrum of liquid water. Chem Phys Lett 277:478–482

    Article  ADS  Google Scholar 

  • Souza I, Iniguez J, Vanderbilt D (2002) First-principles approach to insulators in finite electric fields. Phys Rev Lett 89:117602

    Article  ADS  Google Scholar 

  • Spaldin NA (2012) A beginners guide to the modern theory of polarization. J Solid State Chem 195:2–10

    Article  ADS  Google Scholar 

  • Su WP, Schrieffer JR, Heeger AJ (1979) Solitons in polyacetylene. Phys Rev Lett 42:1698–1701

    Article  ADS  Google Scholar 

  • Thonhauser T (2011) Theory of orbital magnetization in solids. Int J Mod Phys B 25:1429–1458

    Article  ADS  MATH  Google Scholar 

  • Thonhauser T, Ceresoli D, Vanderbilt D, Resta R (2005) Orbital magnetization in periodic insulators. Phys Rev Lett 9:137205

    Article  ADS  Google Scholar 

  • Thonhauser T, Ceresoli D, Mostofi AA, Marzari N, Resta R, Vanderbilt D (2009) A converse approach to the calculation of NMR shielding tensors. J Chem Phys 131:101101

    Article  ADS  Google Scholar 

  • Umari P, Pasquarello A (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys Rev Lett 89:157602

    Article  ADS  Google Scholar 

  • Vanderbilt D, King-Smith D (1993) Electric polarization as a bulk quantity and its relation to surface charge. Phys Rev B 48:4442–4455

    Article  ADS  Google Scholar 

  • Vanderbilt D, Resta R (2006) Quantum electrostatics of insulators – polarization, Wannier functions, and electric fields. In: Louie SG, Cohen, ML (eds) Conceptual foundations of materials: a standard model for ground- and excited-state properties. Elsevier, Amsterdam, pp 139–163

    Chapter  Google Scholar 

  • Wannier GH (1937) The structure of electronic excitation levels in insulating crystals. Phys Rev 52:191–197

    Article  ADS  MATH  Google Scholar 

  • Xiao D, Shi J, Niu Q (2005) Berry phase correction to electron density of states in solids. Phys Rev Lett 95:137204

    Article  ADS  Google Scholar 

  • Zak J (1989) Berry’s phase for energy bands in solids. Phys Rev Lett 62:2747–2750

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Resta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Resta, R. (2020). Electrical Polarization and Orbital Magnetization: The Position Operator Tamed. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_12

Download citation

Publish with us

Policies and ethics