Skip to main content

Determination of Kinetic Parameters and Metabolic Modes Using the Chemostat

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Continuous cultures in the form of chemostats limited by carbon source, energy source, nitrogen, phosphate, or oxygen are commonly used where reproducible growth or a continuous supply of biomass is needed. Originally, they were developed as means to determine a range of kinetic parameters such as specific molar growth yield (Y) and derived parameters such as maximum specific molar growth yield (YMAX), maximum specific growth rate (μMAX), maintenance coefficient (mS), specific maintenance rate (a), the Monod constant (KS), etc. These parameters afford very useful means of comparing organisms or determining metabolic modes within an organism but are sadly no longer widely used, largely for reasons of skill sets disappearing. In this chapter we cover the basics of running a chemostat to give high-quality growth data and manipulation thereof to obtain growth kinetic parameters.

This is a preview of subscription content, log in via an institution.

References

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, London

    Google Scholar 

  • Aronoff S (1957) Techniques of radiobiochemistry. The Iowa State College Press, Ames

    Google Scholar 

  • Avery GB Jr, Shannon RD, White JD, Martens CS, Alperin MJ (1999) Effect of seasonal changes in the pathways of methanogenesis on the ∂13C values of pore water methane in a Michigan peatland. Global Biogeochem Cycles 13:475–484

    Article  CAS  Google Scholar 

  • Bauchop T, Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J Gen Microbiol 23:457–469

    CAS  PubMed  Google Scholar 

  • Boden R, Murrell JC (2011) Response to mercury (II) ions in Methylococcus capsulatus (bath). FEMS Microbiol Lett 324:106–110

    Article  CAS  PubMed  Google Scholar 

  • Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12:2688–2699

    Google Scholar 

  • Boden R, Borodina E, Wood AP, Kelly DP, Murrell JC, Schäfer H (2011a) Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans. J Bacteriol 193:1250–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boden R, Murrell JC, Schäfer H (2011b) Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol Lett 322:188–193

    Article  CAS  PubMed  Google Scholar 

  • Boden R, Hutt LP, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy T, Ngan CY, Daum C, Shapiro N, Markowitz V, Ivanova N, Woyke T, Kyrpides N (2016) Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic. Stand Genomic Sci 11:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methyl-tropic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437

    Article  CAS  PubMed  Google Scholar 

  • Chongcharoen R, Smith TJ, Flint KP, Dalton H (2005) Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification. Microbiology 151:2615–2622

    Article  CAS  PubMed  Google Scholar 

  • Cohen A (1922) Xylenol blue and its proposed use as a new and improved indicator in chemical and biochemical work. Biochem J 16:31–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper CM, Fernstorm GA, Miller SA (1944) Performance of agitated gas-liquid contactors. Ind Eng Chem 36:504–509

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drevon D, Fursa SR, Malcolm AL (2016) Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif 41:323–339

    Article  PubMed  Google Scholar 

  • Eccleston M, Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J Bacteriol 134:718–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Sun C, Li Y, Zou X, Wu X, Ling Y, Luan C, Chen H (2017) Vital staining of bacteria by sunset yellow pigment. Pol J Microbiol 66:113–117

    Article  PubMed  Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  PubMed  Google Scholar 

  • Good NE, Izawa S (1972) Hydrogen ion buffers. Methods Enzymol 24:53–68

    Article  CAS  PubMed  Google Scholar 

  • Good NE, Winget DG, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  CAS  PubMed  Google Scholar 

  • Grady JK, Chasteen ND, Harris DC (1988) Radicals from “Good’s” buffers. Anal Biochem 173:111–115

    Article  CAS  PubMed  Google Scholar 

  • Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, Levchenko A (2005) A microfluidic chemostat for experiments with bacterial and yeast cells. Nat Methods 2:685–589

    Article  CAS  PubMed  Google Scholar 

  • Güde H, Strohl WR, Larkin JM (1981) Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch Microbiol 129:357–360

    Article  PubMed  Google Scholar 

  • Haldane JBS (1957) Graphical methods in enzyme chemistry. Nature 179:832–832

    Article  Google Scholar 

  • Hanes CS (1932) Studies on plant amylases: the effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J 26:1406–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison DEF, Loveless JE (1971) The effect of growth conditions on respiratory activity and growth efficiency in facultative anaerobes in chemostat culture. J Gen Microbiol 68:35–43

    Article  CAS  PubMed  Google Scholar 

  • Harrison DEF, MacLennan DG, Pirt SJ (1969) Responses of bacteria to dissolved oxygen tension. In: Perlman D (ed) Fermentation advances. Academic, New York, pp 117–143

    Google Scholar 

  • Hofstee BHJ (1959) Non-inverted versus inverted plots in enzyme kinetics. Nature 184:1296–1298

    Article  CAS  PubMed  Google Scholar 

  • Hutt LP (2016) Taxonomy, physiology and biochemistry of the sulfur bacteria. PhD thesis, University of Plymouth

    Google Scholar 

  • Karagouni AD, Slater JH (1978) Growth of the blue-green alga Anacystis nidulans during washout from light- and carbon dioxide-limited chemostats. FEMS Microbiol Lett 4:295–299

    Article  CAS  Google Scholar 

  • Kelly DP, Syrett PJ (1964) The Effect of Uncoupling Agents on Carbon Dioxide Fixation by a Thiobacillus. J Gen Microbiol 34(2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP (1965) Energy metabolism of the chemoautotrophic bacterium, Thiobacillus. PhD thesis, University College London

    Google Scholar 

  • Kelly DP, Syrett PJ (1963) Effect of 2:4-dinitrophenol on carbon dioxide fixation by a Thiobacillus. Nature 197:1087–1089

    Article  CAS  Google Scholar 

  • Kelly DP, Syrett PJ (1966) Energy coupling during sulphur compound oxidation by Thiobacillus sp. strain c. J Gen Microbiol 43:109–118

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Wood AP (1994) Synthesis and determination of polythionates and thiosulfate. Methods Enzymol 243:475–501

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP (1998) Microbes of the sulfur cycle. In: Burlage R, Atlas R, Stahl D, Geesey G, Gayler G (eds) Techniques in microbial ecology. Oxford University Press, New York

    Google Scholar 

  • Kelly DP, Mason J, Wood AP (1987) Energy metabolism in chemolithotrophs. In: van Verseveld HW, Duine JA (eds) Microbial growth on C1 compounds. Proceedings of the 5th international symposium. Martinus Nijhoff Publishers, Dordrecht

    Chapter  Google Scholar 

  • Koch AL (1981) Growth measurement. In: Gerhardt P, Murray RGE, Costilow RN, Nester EN, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 182–207

    Google Scholar 

  • Lidbury I, Kröber E, Zhang Z, Zhu Y, Murrell JC, Chen Y, Schäfer H (2016) A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. Environ Microbiol 18:2753–2766

    Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Long Z, Nugent E, Jager A, Cicuta P, Sclavi B, Consentino Lagomarsino M, Dorfman KD (2013) Microfluidic chemostat for measuring single cell dynamics. Lab Chip 13:947–945

    Article  CAS  PubMed  Google Scholar 

  • Lyons D, Nickless G (1968) The lower oxy-acids of sulphur. In: Nickless G (ed) Inorganic sulphur chemistry. Elsevier, Amsterdam, pp 509–534

    Google Scholar 

  • MacLennan DG, Ousby JC, Vasey RB, Cotton NT (1971) The influence of dissolved oxygen on Pseudomonas AM1 grown on methanol in continuous culture. J Gen Microbiol 69:395–404

    Article  CAS  PubMed  Google Scholar 

  • Mason J (1986) Microbial growth and the oxidation of inorganic sulphur compounds. PhD thesis, University of Warwick

    Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–339

    CAS  Google Scholar 

  • Monod J (1942) Recherches sur la croissance des Cultures Bactériennes. Hermann, Paris

    Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc B 163:224–231

    Article  CAS  Google Scholar 

  • Padden AN (1997) Microbial degradation of organic sulfur compounds. PhD thesis, King’s College London

    Google Scholar 

  • Padden AN, Kelly DP, Wood AP (1998) Chemolithoheterotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch Microbiol 169:249–256

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources investigations report 99-4259

    Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Halsted Press, New York

    Google Scholar 

  • Pirt SJ, Callow DS (1958) Observations on foaming and its inhibition in a bacterial culture. J Appl Microbiol 21:211–216

    Google Scholar 

  • Pirt SJ, Callow DS (1960) Studies on the growth of Penicillium chrysogenum in continuous flow culture with reference to penicillin production. J Appl Bacteriol 23:87–98

    Article  Google Scholar 

  • Pirt SJ, Panikov N, Lee Y-K (1979) The miniloop: a small-scale air-lift microbial culture vessel and photo biological reactor. J Chem Technol Biotechnol 29:437–441

    Article  Google Scholar 

  • Pogliano J, Osborne N, Sharp MD, Abanes-De Mello A, Perez A, Sun Y-L, Pogliano K (1999) A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol Microbiol 31:1149–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffo M (1908) Ueber kolloiden Schwefel. Kolloid Z 2:358–360

    Article  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skidmore DW (1979) Purification of carbon disulphide for use as a solvent in gas chromatography. Ann Occup Hyg 22:181–182

    CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Solórzano L (1969) Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr 14:799–801

    Article  Google Scholar 

  • Soni ML, Kapoor RC (1981) Some thermodynamic parameters for hydroxyl amino acids: bicine and tricine. Int J Quantum Chem 20:385–391

    Article  CAS  Google Scholar 

  • Steudel R (2003) Aqueous sulfur sols. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds I. Springer, Berlin, pp 156–166

    Chapter  Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Anton van Leeuwenhoek 39:545–565

    Article  CAS  Google Scholar 

  • Stouthamer AH (1976) Yield studies in microorganisms, Patterns of Progress PP/M/3. Meadowfield, Shildon

    Google Scholar 

  • Stouthamer AH, Bettenhausen C (1973) Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim Biophys Acta 301:53–70

    Article  CAS  PubMed  Google Scholar 

  • Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with14CO2-fixation and iron oxidation as measures of growth. Arch Mikrobiol 88:285–298

    Article  CAS  PubMed  Google Scholar 

  • van Steveninck J, Booij HL (1964) The role of polyphosphates in the transport mechanism of glucose in yeast cells. J Gen Physiol 48:43–60

    Article  PubMed Central  Google Scholar 

  • von Bodegom P (2007) Microbial maintenance: a critical review on its quantitation. Microb Ecol 53:513–523

    Article  PubMed  PubMed Central  Google Scholar 

  • von Weimarn PP (1926) Über schwefellsungen von allen furben de spektrums. Kolloidchemische Beiheffe band XXII. Booklet 1–2

    Google Scholar 

  • Watson TG (1970) Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J Gen Microbiol 64:91–99

    Article  CAS  PubMed  Google Scholar 

  • Wood AP, Kelly DP (1981) Mixotrophic growth of Thiobacillus A2 in chemostat culture on formate and glucose. J Gen Microbiol 125:55–62

    CAS  Google Scholar 

  • Wood AP, Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch Microbiol 144:71–77

    Article  CAS  Google Scholar 

  • Xia R (2016) The dying breed of craftsmen behind the tools that make scientific research possible. LA Times, 25 June 2016. http://www.latimes.com/local/education/la-me-caltech-glassblower-20160613-snap-story.html

Download references

Acknowledgments

RB thanks those who originally taught him the mathematical basis of chemostat kinetics that inspired him in the first place – Professor Jeremy Mason and Dr. Ann P Wood (both formerly of King’s College London, London, UK) – and those from whom he learnt the practicalities, Professor Donovan P Kelly (Professor Emeritus, University of Warwick, Coventry, UK), Dr. Elena Borodina (Lecturer in Science, Weston College of Further and Higher Education, Weston-super-Mare, UK), Mr. Gez Chapman, Mrs. Jane Green, and the late Dr. Steve Stanley (all formerly of University of Warwick, Coventry, UK). LPH and RB both thank our collaborators Dr. Kathleen M Scott (Associate Professor, University of South Florida, Tampa, FL, USA) and Dr. Jan Kuever (Head of Department of Microbiology, Official Material Testing Institute of the Free Hanseatic City of Bremen, Germany) for continued stimulating discussions on continuous culture methodology and kinetics and the wider field of growth physiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rich Boden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boden, R., Hutt, L.P. (2018). Determination of Kinetic Parameters and Metabolic Modes Using the Chemostat. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-44535-9_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44535-9_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44535-9

  • Online ISBN: 978-3-319-44535-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics