Neuroendocrinology of Energy Homeostasis

  • Valentina Lo Preiato
  • Valentina Vicennati
  • Silvia Garelli
  • Uberto Pagotto
Reference work entry
Part of the Endocrinology book series (ENDOCR)


Body weight regulation consists of a series of complex and occasionally redundant mechanisms principally involving food intake and energy expenditure. Many hormones, nutrients, and neurotransmitters are involved in signaling hunger and satiety. This multitude of signals is integrated by the hypothalamus, which in turn acts by changing the hormonal secretion pattern. In addition, the homeostatic system is strongly influenced by the brain circuits involved in pleasure, resulting in a food intake that is based on hedonistic choices, rather than just biological need. However, alterations in the mechanisms controlling the pleasure and gratification derived from food might also induce an increase in weight.


Food intake Hypothalamus Arcuate nucleus 


  1. Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY 3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005a;1044:127–31.PubMedCrossRefGoogle Scholar
  2. Abbott CR, Small CJ, Kennedy AR, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res. 2005b;1043:139–44.PubMedCrossRefGoogle Scholar
  3. Arnone M, Maruani J, Chaperon F, et al. Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology. 1997;132(1):104–6.PubMedCrossRefGoogle Scholar
  4. Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides. 2014;56:94–110.PubMedCrossRefGoogle Scholar
  5. Bachman ES, Dhillon H, Zhang CY, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297(5582):843–5.PubMedCrossRefGoogle Scholar
  6. Badonnel K, Durieux D, Monnerie R, et al. Leptin-sensitive OBP-expressing mucous cells in rat olfactory epithelium: a novel target for olfaction-nutrition crosstalk? Cell Tissue Res. 2009;338:53–66.PubMedCrossRefGoogle Scholar
  7. Bamshad M, Song CK, Bartness TJ. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Phys. 1999;276(6 Pt 2):R1569–78.Google Scholar
  8. Barbano MF, Cador M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology. 2007;191(3):497–506.PubMedCrossRefGoogle Scholar
  9. Bartolomucci A, Cabassi A, Govoni P, et al. Metabolic consequences and vulnerability to diet-induced obesity in male mice under chronic social stress. PLoS One. 2009;4:e4331.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Batterham RL, Heffron H, Kapoor S, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006;4:223–33.PubMedCrossRefGoogle Scholar
  11. Batterham RL, Ffytche DH, Rosenthal JM, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450:106–9.PubMedCrossRefGoogle Scholar
  12. Baura GD, Foster DM, Porte D Jr, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92:1824–30.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beglinger C, Degen L, Matzinger D, et al. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1149–54.PubMedCrossRefGoogle Scholar
  14. Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci. 2010;1212:97–113.PubMedCrossRefGoogle Scholar
  15. Benoit SC, Schwartz MW, Lachey JL, et al. A novel selective melanocortin-4 receptor agonist reduces food intake in rats and mice without producing aversive consequences. J Neurosci. 2000;20(9):3442–8.PubMedGoogle Scholar
  16. Bi S, Robinson BM, Moran TH. Acute food deprivation and chronic food restriction differentially affect hypothalamic NPY mRNA expression. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1030–6.PubMedCrossRefGoogle Scholar
  17. Bi S, Scott KA, Kopin AS, et al. Differential roles for cholecystokinin receptors in energy balance in rats and mice. Endocrinology. 2004;145:3873–80.PubMedCrossRefGoogle Scholar
  18. Bi S, Kim YJ, Zheng F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides. 2012;46:309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860:1–10.PubMedCrossRefGoogle Scholar
  20. Blevins JE, Schwartz MW, Baskin DG. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol. 2004;287:R87–96.PubMedCrossRefGoogle Scholar
  21. Bragulat V, Dzemidzic M, Bruno C, et al. Food-related odor probes of brain reward circuits during hunger: a pilot fMRI study. Obesity (Silver Spring). 2010;18(8):1566–71.CrossRefGoogle Scholar
  22. Broberger C, Landry M, Wong H, et al. Subtypes Y1 and Y2 of the neuropeptide Y receptor are respectively expressed in proopiomelanocortin- and neuropeptide-Y-containing neurons of the rat hypothalamic arcuate nucleus. Neuroendocrinology. 1997;66:393–408.PubMedCrossRefGoogle Scholar
  23. Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav. 2013;121:117–24.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Burdyga G, Spiller D, Morris R, et al. Expression of the leptin receptor in rat and human nodose ganglion neurons. Neuroscience. 2002;109:339–47.PubMedCrossRefGoogle Scholar
  25. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–37.PubMedCrossRefGoogle Scholar
  26. Cao WH, Morrison SF. Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology. 2006;51(3):426–37.PubMedCrossRefGoogle Scholar
  27. Cao WH, Madden CJ, Morrison SF. Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol. 2010;299(1):R277–90.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cardinal P, Bellocchio L, Clark S, et al. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice. Endocrinology. 2012;153(9):4136–43.PubMedCrossRefGoogle Scholar
  29. Carneiro IP, Elliott SA, Siervo M, et al. Is obesity associated with altered energy expenditure? Adv Nutr. 2016;7(3):476–87.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Caro JF, Kolaczynski JW, Nyce MR, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996;348:159–61.PubMedCrossRefGoogle Scholar
  31. Cerri M, Morrison SF. Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus. Neuroscience. 2006;140(2):711–21.PubMedCrossRefGoogle Scholar
  32. Chao PT, Yang L, Aja S, et al. Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 2011;13(5):573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen AS, Marsh DJ, Trumbauer ME, et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet. 2000;26:97–102.PubMedCrossRefGoogle Scholar
  34. Cho YM, Fujita Y, Kieffer TJ. Glucagon-like peptide-1: glucose homeostasis and beyond. Annu Rev Physiol. 2014;76:535–59.PubMedCrossRefGoogle Scholar
  35. Claret M, Smith MA, Batterham RL, et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 2007;117(8):2325–36.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cooper SJ. Minireview. Benzodiazepine-opiate antagonist interactions in relation to feeding and drinking behavior. Life Sci. 1983;32(10):1043–51. ReviewPubMedCrossRefGoogle Scholar
  37. Corp ES, Woods SC, Porte D Jr, et al. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett. 1986;70(1):17–22.PubMedCrossRefGoogle Scholar
  38. Cota D, Tschoep MH, Horvath T, et al. Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res Rev. 2006;51:85–107.PubMedCrossRefGoogle Scholar
  39. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.PubMedCrossRefGoogle Scholar
  40. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.PubMedCrossRefGoogle Scholar
  41. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.PubMedCrossRefGoogle Scholar
  42. Dakin CL, Gunn I, Small CJ, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology. 2001;142:4244–50.PubMedCrossRefGoogle Scholar
  43. de Git KC, Adan RA. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev. 2015;16:207–24.PubMedCrossRefGoogle Scholar
  44. De Silva A, Salem V, Long CJ, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14:700–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Deane AM, Nguyen NQ, Stevens JE, et al. Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab. 2010;95:215–21.PubMedCrossRefGoogle Scholar
  46. Del Parigi A, Gautier JF, Chen K, et al. Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann N Y Acad Sci. 2002;967:389–97. ReviewPubMedCrossRefGoogle Scholar
  47. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.PubMedCrossRefGoogle Scholar
  48. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–5.PubMedCrossRefGoogle Scholar
  49. Dickson SL, Egecioglu E, Landgren S, et al. The role of the central ghrelin system in reward from food and chemical drugs. Mol Cell Endocrinol. 2011;340:80–7.PubMedCrossRefGoogle Scholar
  50. Drewnowski A, Krahn DD, Demitrack MA, et al. Taste responses and preferences for sweet high-fat foods: evidence for opioid involvement. Physiol Behav. 1992;51:371–9.PubMedCrossRefGoogle Scholar
  51. Dum J, Gramsch C, Herz A. Activation of hypothalamic beta-endorphin pools by reward induced by highly palatable food. Pharmacol Biochem Behav. 1983;18(3):443–7.PubMedCrossRefGoogle Scholar
  52. English PJ, Ghatei MA, Malik IA, et al. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87:2984.PubMedCrossRefGoogle Scholar
  53. Enriori PJ, Sinnayah P, Simonds SE, et al. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci. 2011;31(34):12189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Farooqi IS, O’Rahilly S. Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab. 2008;4:569–77.PubMedCrossRefGoogle Scholar
  55. Farooqi IS, Bullmore E, Keogh J, et al. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355.PubMedCrossRefGoogle Scholar
  56. Fei H, Okano HJ, Li C, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci USA. 1997;94:7001–5.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Figlewicz DP, Nadzan AM, Sipols AJ, et al. Intraventricular CCK-8 reduces single meal size in the baboon by interaction with type-A CCK receptors. Am J Phys. 1992;263:R863–7.Google Scholar
  58. Flegal KM, Graubard BI, Williamson DF, et al. Excess deaths associated with underweight, overweight, and obesity. JAMA. 2005;293(15):1861–7.PubMedCrossRefGoogle Scholar
  59. Gamber KM, Macarthur H, Westfall TC. Cannabinoids augment the release of neuropeptide Y in the rat hypothalamus. Neuropharmacology. 2005;49(5):646–52.PubMedCrossRefGoogle Scholar
  60. Gearhardt AN, White MA, Masheb RM, et al. An examination of the food addiction construct in obese patients with binge eating disorder. Int J Eat Disord. 2012;45(5):657–63.PubMedCrossRefGoogle Scholar
  61. George S, Khan S, Briggs H, et al. CRH-stimulated cortisol release and food intake in healthy, non-obese adults. Psychoneuroendocrinology. 2010;35:607–12.PubMedCrossRefGoogle Scholar
  62. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84:488–95.PubMedCrossRefGoogle Scholar
  63. Greenway FL, Dunayevich E, Tollefson G, et al. Comparison of combined bupropion and naltrexone therapy for obesity with monotherapy and placebo. J Clin Endocrinol Metab. 2009;94(12):4898–906.PubMedCrossRefGoogle Scholar
  64. Guo F, Bakal K, Minokoshi Y, et al. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology. 2004;145(5):2221–7. Epub 2004 Feb 5PubMedCrossRefGoogle Scholar
  65. Gyengesi E, Liu Z-W, D’Agostino G, et al. Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology. 2010;151:5395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Halford JC, Blundell JE. Separate systems for serotonin and leptin in appetite control. Ann Med. 2000;32:222–32.PubMedCrossRefGoogle Scholar
  67. Haltia LT, Rinne JO, Merisaari H, et al. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse. 2007;61:748–56.PubMedCrossRefGoogle Scholar
  68. Harrold JA, Dovey TM, Blundell JE, et al. CNS regulation of appetite. Neuropharmacology. 2012;63:3–17.PubMedCrossRefGoogle Scholar
  69. Heisler LK, Cowley MA, Tecott LH, et al. Activation of central melanocortin pathways by fenfluramine. Science. 2002;297:609–11.PubMedCrossRefGoogle Scholar
  70. Heppner KM, Perez-Tilve D. GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci. 2015;9:92.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hinton EC, Holland AJ, Gellatly MS, et al. Neural representations of hunger and satiety in Prader-Willi syndrome. Int J Obes. 2006;30(2):313–21.CrossRefGoogle Scholar
  72. Hirosue Y, Inui A, Teranishi A, et al. Cholecystokinin octapeptide analogues suppress food intake via central CCK-A receptors in mice. Am J Phys. 1993;265:R481–6.Google Scholar
  73. Holland AJ, Treasure J, Coskeran P, et al. Measurement of excessive appetite and metabolic changes in Prader-Willi syndrome. Int J Obes Relat Metab Disord. 1993;17(9):527–32.PubMedGoogle Scholar
  74. Holmer H, Pozarek G, Wirfält E, et al. Reduced energy expenditure and impaired feeding-related signals but not high energy intake reinforces hypothalamic obesity in adults with childhood onset craniopharyngioma. J Clin Endocrinol Metab. 2010;95(12):5395–402.PubMedCrossRefGoogle Scholar
  75. Holsen LM, Lawson EA, Blum J, et al. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. J Psychiatry Neurosci. 2012;37(5):322–32.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.PubMedCrossRefGoogle Scholar
  77. Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006;51:801–10.PubMedCrossRefGoogle Scholar
  78. Hosogai N, Fukuhara A, Oshima K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4):901–11.PubMedCrossRefGoogle Scholar
  79. Huszar D, Lynch CA, Fairchild-Huntress V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88:131–41.PubMedCrossRefGoogle Scholar
  80. Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001;134:1151–4.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jeanneteau FD, Lambert WM, Ismaili N, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci USA. 2012;109:1305–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jernås M, Palming J, Sjöholm K, et al. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J. 2006;20(9):1540–2. Epub 2006 Jun 5PubMedCrossRefGoogle Scholar
  83. Johansson JO, Jarbe TU, Henriksson BG. Acute and subchronic influences of tetrahydrocannabinols on water and food intake, body weight, and temperature in rats. TIT J Life Sci. 1975;5(1–2):17–27.PubMedGoogle Scholar
  84. Jones D. End of the line for cannabinoid receptor 1 as an anti-obesity target? Nat Rev Drug Discov. 2008;7(12):961–2.PubMedCrossRefGoogle Scholar
  85. Kanoski SE, Hayes MR, Greenwald HS, et al. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing. Neuropsychopharmacology. 2011;36:1859–70.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kirkham TC, Williams CM, Fezza F, et al. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136:550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kissileff HR, Pi-Sunyer FX, Thornton J, et al. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34:154–60.PubMedCrossRefGoogle Scholar
  88. Klöting N, Fasshauer M, Dietrich A, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299(3):E506–15.PubMedCrossRefGoogle Scholar
  89. Kola B, Farkas I, Christ-Crain M, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One. 2008;3:e1797.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kong WM, Stanley S, Gardiner J, et al. A role for arcuate cocaine and amphetamine regulated transcript in hyperphagia, thermogenesis, and cold adaptation. FASEB J. 2003;17:1688–90.PubMedCrossRefGoogle Scholar
  91. Kong D, Tong Q, Ye C, et al. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell. 2012;151(3):645–57.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Krashes MJ, Lowell BB, Garfield AS. Melanocortin-4-receptor regulated energy homeostasis. Nat Neurosci. 2016;19:206–19.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393:72–6.PubMedCrossRefGoogle Scholar
  94. Labouebe G, Liu S, Dias C, et al. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci. 2013;16:300–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lage R, Parisi C, Seoane-Collazo P, et al. Lack of hypophagia in CB1 null mice is associated to decreased hypothalamic POMC and CART expression. Int J Neuropsychopharmacol. 2015;18(9). pii: pyv011Google Scholar
  96. Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis. Front Neurosci. 2014;8:313. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lawrence CB, Snape AC, Baudoin FM, et al. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology. 2002;143:155–62.PubMedCrossRefGoogle Scholar
  98. Lean ME, Malkova D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int J Obes. 2016;40:622–32.CrossRefGoogle Scholar
  99. Lee SJ, Kirigiti M, Lindsley SR, et al. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol. 2013;521:1891–914.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lin S, Boey D, Couzens M, et al. Compensatory changes in [125I]-PYY binding in Y receptor knockout mice suggest the potential existence of further Y receptor(s). Neuropeptides. 2005;39:21–8.PubMedCrossRefGoogle Scholar
  101. Lockie SH, Heppner KM, Chaudhary N, et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61(11):2753–62.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ludwig DS, Tritos NA, Mastaitis JW, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest. 2001;107:379–86.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology. 2007;32:2267–78.PubMedCrossRefGoogle Scholar
  104. Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.PubMedCrossRefGoogle Scholar
  105. Mameli-Engvall M, Evrard A, Pons S, et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron. 2006;50(6):911–21.PubMedCrossRefGoogle Scholar
  106. Marsh DJ, Weingarth DT, Novi DE, et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA. 2002;99:3240–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Martin B, Dotson CD, Shin YK, et al. Modulation of taste sensitivity by GLP-1 signaling in taste buds. Ann N Y Acad Sci. 2009;1170:98–101.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mashiko S, Moriya R, Ishihara A, et al. Synergistic interaction between neuropeptide Y1 and Y5 receptor pathways in regulation of energy homeostasis. Eur J Pharmacol. 2009;615:113–7.PubMedCrossRefGoogle Scholar
  109. McCrickerd K, Forde CG. Sensory influences on food intake control: moving beyond palatability. Obes Rev. 2016;17:18–29.PubMedCrossRefGoogle Scholar
  110. Melis T, Succu S, Sanna F, et al. The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett. 2007;419:231–5.PubMedCrossRefGoogle Scholar
  111. Michopoulos V, Toufexis D, Wilson ME. Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology. 2012;37:1479–90.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Miller JL, James GA, Goldstone AP, et al. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. J Neurol Neurosurg Psychiatry. 2007;78(6):615–9. Epub 2006 Dec 8PubMedCrossRefGoogle Scholar
  113. Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 2004;286:G183–8.PubMedCrossRefGoogle Scholar
  114. Moran TH, Robinson PH, Goldrich MS, et al. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res. 1986;362:175–9.PubMedCrossRefGoogle Scholar
  115. Moriarty P, Dimaline R, Thompson DG, et al. Characterization of cholecystokinin (A) and cholecystokinin (B) receptors expressed by vagal afferent neurons. Neuroscience. 1997;79:905–13.PubMedCrossRefGoogle Scholar
  116. Mountjoy KG. Pro-opiomelanocortin (POMC) neurones, POMC-derived peptides, melanocortin receptors and obesity: how understanding of this system has changed over the last decade. J Neuroendocrinol. 2015;27:406–18.PubMedCrossRefGoogle Scholar
  117. Müller TD, Nogueiras R, Andermann ML, et al. Ghrelin. Mol Metab. 2015;4:437–60.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–9.PubMedCrossRefGoogle Scholar
  119. Nakagawa A, Satake H, Nakabayashi H, et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton Neurosci. 2004;110:36–43.PubMedCrossRefGoogle Scholar
  120. Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Regul Integr Comp Physiol. 2016;311:R811.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nonogaki K, Strack AM, Dallman MF, et al. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med. 1998;4:1152–6.PubMedCrossRefGoogle Scholar
  122. Ollmann MM, Wilson BD, Yang YK, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278:135–8.PubMedCrossRefGoogle Scholar
  123. Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol. 2012;24:587–98.PubMedCrossRefGoogle Scholar
  124. Page AJ, Slattery JA, Milte C, et al. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1376–84.PubMedCrossRefGoogle Scholar
  125. Page-Wilson G, Wardlaw SL, Khandji AG, et al. Hypothalamic obesity in patients with craniopharyngioma: treatment approaches and the emerging role of gastric bypass surgery. Pituitary. 2012;15(1):84–92.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Parise EM, Lilly N, Kay K, et al. Evidence for the role of hindbrain orexin-1 receptors in the control of meal size. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1692–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007;449:228–32.PubMedCrossRefGoogle Scholar
  128. Peters JH, Simasko SM, Ritter RC. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol Behav. 2006;89:477–85.PubMedCrossRefGoogle Scholar
  129. Plamboeck A, Veedfald S, Deacon CF, et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am J Physiol Gastrointest Liver Physiol. 2013;304:G1117–27.PubMedCrossRefGoogle Scholar
  130. Plazzi G, Moghadam KK, Maggi LS, et al. Autonomic disturbances in narcolepsy. Sleep Med Rev. 2011;15:187–96.PubMedCrossRefGoogle Scholar
  131. Pocai A. Unraveling oxyntomodulin, GLP-1’s enigmatic brother. J Endocrinol. 2012;215:335–46.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Praful S. Singru, Gábor Wittmann, Erzsébet Farkas, Györgyi Zséli, Csaba Fekete, Ronald M. Lechan. Refeeding-Activated Glutamatergic Neurons in the Hypothalamic Paraventricular Nucleus (PVN) Mediate Effects of Melanocortin Signaling in the Nucleus Tractus Solitarius (NTS). Endocrinology 2012;153(8):3804–3814Google Scholar
  133. Rezai-Zadeh K, Münzberg H. Integration of sensory information via central thermoregulatory leptin targets. Physiol Behav. 2013;121:49–55.PubMedCrossRefGoogle Scholar
  134. Roth CL, Aylward E, Liang O, et al. Functional neuroimaging in craniopharyngioma: a useful tool to better understand hypothalamic obesity? Obes Facts. 2012;5(2):243–53.PubMedCrossRefGoogle Scholar
  135. Rudski JM, Billington CJ, Levine AS. Butorphanol increases food-reinforced operant responding in satiated rats. Pharmacol Biochem Behav. 1994;49(4):843–7.PubMedCrossRefGoogle Scholar
  136. Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013;14:387–407.PubMedCrossRefGoogle Scholar
  137. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol. 2015;208(5):501–12.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rutters F, Nieuwenhuizen AG, Lemmens SGT, et al. Acute stress-related changes in eating in the absence of hunger. Obesity (Silver Spring). 2009;17:72–7.CrossRefGoogle Scholar
  139. Sahu A. Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front Neuroendocrinol. 2003;24:225–53.PubMedCrossRefGoogle Scholar
  140. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.PubMedCrossRefGoogle Scholar
  141. Schwartz TW, Holst JJ, Fahrenkrug J, et al. Vagal, cholinergic regulation of pancreatic polypeptide secretion. J Clin Invest. 1978;61:781–9.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.PubMedCrossRefGoogle Scholar
  143. Sellayah D, Bharaj P, Sikder D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 2011;14(4):478–90.PubMedCrossRefGoogle Scholar
  144. Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shigemura N, Ohta R, Kusakabe Y, et al. Leptin modulates behavioral responses to sweet substances by influencing peripheral tastestructures. Endocrinology. 2004;145:839–47.PubMedCrossRefGoogle Scholar
  146. Shimizu N, Oomura Y, Plata-Salamán CR, Morimoto M. Hyperphagia and obesity in rats with bilateral ibotenic acid-induced lesions of the ventromedial hypothalamic nucleus. Brain Res. 1987;416:153–6.PubMedCrossRefGoogle Scholar
  147. Shor-Posner G, Azar AP, Jhanwar-Uniyal M, et al. Destruction of noradrenergic innervation to the paraventricular nucleus: deficits in food intake, macronutrient selection, and compensatory eating after food deprivation. Pharmacol Biochem Behav. 1986;25:381–92.PubMedCrossRefGoogle Scholar
  148. Sisley S, Gutierrez-Aguilar R, Scott M, et al. Neuronal GLP-1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest. 2014;124:2456–63.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Soria-Gomez E, Bellocchio L, Marsicano G. New insights on food intake control by olfactory processes: the emerging role of the endocannabinoid system. Mol Cell Endocrinol. 2014;397:59–66.PubMedCrossRefGoogle Scholar
  150. Spreckley E, Murphy KG. The L-cell in nutritional sensing and the regulation of appetite. Front Nutr. 2015;2:23.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Stanley BG, Chin AS, Leibowitz SF. Feeding and drinking elicited by central injection of neuropeptide Y: evidence for a hypothalamic site(s) of action. Brain Res Bull. 1985;14:521–4.PubMedCrossRefGoogle Scholar
  152. Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322:449–52.PubMedCrossRefGoogle Scholar
  153. Strissel KJ, Stancheva Z, Miyoshi H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8.PubMedCrossRefGoogle Scholar
  154. Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Exp Diabetes Res. 2012;2012:824305.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Szczypka MS, Kwok K, Brot MD, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron. 2001;30:819–28.PubMedCrossRefGoogle Scholar
  156. Toriya M, Maekawa F, Maejima Y, et al. Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin releasing hormone pathway in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 2010;22:987–95.PubMedCrossRefGoogle Scholar
  157. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.PubMedCrossRefGoogle Scholar
  158. Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61:162–76.PubMedCrossRefGoogle Scholar
  159. Tupone D, Madden CJ, Cano G, Morrison SF. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J Neurosci. 2011;31(44):15944–55.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ulrich-Lai YM, Ostrander MM, Thomas IM, et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology. 2007;148:1823–34.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Vahl TP, Drazen DL, Seeley RJ, et al. Meal-anticipatory glucagon-like peptide-1 secretion in rats. Endocrinology. 2010;151:569–75.PubMedCrossRefGoogle Scholar
  162. van Bloemendaal L, IJzerman RG, Ten Kulve JS, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–96.PubMedCrossRefGoogle Scholar
  163. van der Kooy D. Area postrema: site where cholecystokinin acts to decrease food intake. Brain Res. 1984;295:345–7.PubMedCrossRefGoogle Scholar
  164. Verty AN, Boon WM, Mallet PE, et al. Involvement of hypothalamic peptides in the anorectic action of the CB receptor antagonist rimonabant (SR 141716). Eur J Neurosci. 2009;29:2207–16.PubMedCrossRefGoogle Scholar
  165. Vicennati V, Pasqui F, Cavazza C, et al. Cortisol, energy intake, and food frequency in overweight/obese women. Nutrition. 2011;27:677–80.PubMedCrossRefGoogle Scholar
  166. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.PubMedCrossRefGoogle Scholar
  167. von Deneen KM, Gold MS, Liu Y. Food addiction and cues in prader-willi syndrome. J Addict Med. 2009;3(1):19–25.CrossRefGoogle Scholar
  168. Wang CF, Billington CJ, Levine AS, Kotz CM. Effect of CART in the hypothalamic paraventricular nucleus on feeding and uncoupling protein gene expression. Neuroreport. 2000;11:3251–5.PubMedCrossRefGoogle Scholar
  169. Wang L, Saint-Pierre DH, Tach Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y—synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett. 2002;325:47–51.PubMedCrossRefGoogle Scholar
  170. Wang GJ, Volkow ND, Telang F, et al. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage. 2004;21(4):1790–7.PubMedCrossRefGoogle Scholar
  171. Wang GJ, Geliebter A, Volkow ND, et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity (Silver Spring). 2011;19(8):1601–8.CrossRefGoogle Scholar
  172. Wauman J, Tavernier J. Leptin receptor signaling: pathways to leptin resistance. Front Biosci. 2011;16:2771–93.CrossRefGoogle Scholar
  173. Wenger T, Jamali K, Juaneda C, et al. Arachidonyl ethanolamide (anandamide) activates the parvocellular part of hypothalamic paraventricular nucleus. Biochem Biophys Res Commun. 1997;237:724–8.PubMedCrossRefGoogle Scholar
  174. Willner P, Moreau JL, Nielsen CK, et al. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav. 1996;60:129–34.PubMedCrossRefGoogle Scholar
  175. Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2000;50:2540–7.CrossRefGoogle Scholar
  176. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992.PubMedCrossRefGoogle Scholar
  177. Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54:2390–5.PubMedCrossRefGoogle Scholar
  178. Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6:736–42.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yang SC, Shieh KR. Differential effects of melanin concentrating hormone on the central dopaminergic neurons induced by the cocaine- and amphetamine-regulated transcript peptide. J Neurochem. 2005;92:637–46.PubMedCrossRefGoogle Scholar
  180. Yang L, Scott KA, Hyun J, et al. Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. J Neurosci. 2009;29:179–90.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yeomans MR, Gray RW. Selective effects of naltrexone on food pleasantness and intake. Physiol Behav. 1996;60:439–46.PubMedCrossRefGoogle Scholar
  182. Yeomans MR, Gray RW. Opioid peptides and the control of human ingestive behaviour. Neurosci Biobehav Rev. 2002;26(6):713–28.PubMedCrossRefGoogle Scholar
  183. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293(5535):1673–7.PubMedCrossRefGoogle Scholar
  184. Zhang J, Ritter RC. Circulating GLP-1 and CCK-8 reduce food intake by capsaicin-insensitive, nonvagal mechanisms. Am J Physiol Regul Integr Comp Physiol. 2012;302:R264–73.PubMedCrossRefGoogle Scholar
  185. Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci. 2012;32(9):3032–43.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zhang G, Bai H, Zhang H, et al. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron. 2011;69:523–35.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zheng H, Patterson LM, Rhodes CJ, et al. A potential role for hypothalamo-medullary POMC projections in leptin-induced suppression of food intake. Am J Physiol Regul Integr Comp Physiol. 2010;298:R720–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valentina Lo Preiato
    • 1
  • Valentina Vicennati
    • 1
  • Silvia Garelli
    • 1
  • Uberto Pagotto
    • 1
  1. 1.Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical SciencesUniversity of Bologna – S. Orsola-Malpighi HospitalBolognaItaly

Personalised recommendations