Advertisement

Physiology of the Hypothalamus Pituitary Unit

  • Luisa Maria Seoane
  • Sulay Tovar
  • Carlos Dieguez
Reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

The hypothalamic-pituitary unit constitutes the main regulator of the physiological functions in the organism. In the last years, the classical view about the regulation and the function of the main hormonal axis somatotroph, thyrotrophic, lactotroph, and gonadotroph has changed by the inclusion of new signals and organs acting in the hypothalamic-pituitary unit allowing a communication between metabolic status and hormonal system in order to regulate energy balance and physiological functions such as growth, lactation, adiposity, and reproduction.

Keywords

Hypothalamus Pituitary Growth hormone Thyroid Prolactin Gonadal 

List of Abbreviations

ACTH

Adrenocorticotropic hormone

ADH

Anti-diuretic hormone

AMPK

AMP-activated protein kinase

aMSH

Alpha-melanocyte stimulating hormone

ARC

Arcuate nucleus

BAT

Brown adipose tissue

BBB

Blood brain barrier

BMI

Body mass index

CART

Cocaine and amphetamine regulated transcript neuropeptides

CB1

Cannabinoid receptor 1

CCK

Cholecystokinin

CRH

Corticotroph releasing hormone

CRH

Corticotropin releasing hormone

D1

Deiodinase type 1

D3

Deiodinase type 3

DMH

Dorsomedial hypothalamus

FSH

Follicle-stimulating hormone

FSH-RH

Follicle-stimulating hormone–releasing hormone

G6PC

Glucose-6-phosphatese

GH

Growth hormone

GHR

Growth hormone binds at specific transmembrane receptor

GHRH

Growth hormone releasing hormone

GHSR

Growth hormone secretagogue receptor

GLP-1

Glucagon-like peptide-1

GnIH

Gonadotropin Inhibiting Hormone

GnRH

Gonadotropin-releasing hormone

GOAT

Ghrelin O-acyltransferase

GPCR

Seven-transmembrane G-protein coupled receptor

IGF1R

Receptor for IGF1

IGFBB

IGF1 binding proteins

JAK2

Janus kinase 2

KNDy

Kisspeptin/neurokinin B/dynorphin neurons.

LDL-C

Low-density lipoprotein cholesterol

LH

Luteinizing hormone

LHRH

Luteinizing hormone–releasing hormone

MAPK

Mitogen-activated protein kinase

MCT-8

Monocarboxylate transporter 8

NAFLD

Nonalcoholic fatty liver disease

NKA

Neurokinin A

NKB

Neurokinin B

NPY/AgRP

Orexigenic peptides Neuropeptide Y and Agouty-related protein

OATP1C1

Organic anion-transporting polypeptide 1C1

PACAP

Pituitary adenylate cyclase-activating polypeptide

PCK1

Phosphoenolpyruvate carboxykinase

PI3K/AKT

Phosphotidyl inositol 3-kinase

Pit-1

Pituitary transcription factor

POMC/CART

Pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript

PRL

Prolactin

PVH

Paraventricular hypothalamus nucleus

SP

Substance P

SS

Somatostatin

SSTR

Somatostatin receptor

STAT5

Signal transducer and activator of transcription 5

TH

Thyroid hormones T3 and T4

TRH/TRF

Thyrotropin-releasing hormone/thyrotropin-releasing factor

TSH

Thyrotropin/thyroid-stimulating hormone

VIP

Vasoactive intestinal peptide

VMH

Ventromedial hypothalamus.

Δ9THC

Δ9Tetrahydrocannabinol

References

  1. Al-Massadi O, Trujillo ML, Senaris R, Pardo M, Castelao C, Casanueva FF, Seoane LM. The vagus nerve as a regulator of growth hormone secretion. Regul Pept. 2011;166:3–8.CrossRefPubMedGoogle Scholar
  2. Amoss M, Burgus R, Blackwell R, Vale W, Fellows R, Guillemin R. Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone releasing factor (LRF) of ovine origin. Biochem Biophys Res Commun. 1971;44:205–10.CrossRefPubMedGoogle Scholar
  3. Andrews ZB, Kokay IC, Grattan DR. Dissociation of prolactin secretion from tuberoinfundibular dopamine activity in late pregnant rats. Endocrinology. 2001;142:2719–24.CrossRefPubMedGoogle Scholar
  4. Arimura A, Dunn JD, Schally AV. Effect of infusion of hypothalamic extracts on serum prolactin levels in rats treated with nembutal, CNS depressants or bearing hypothalamic lesions. Endocrinology. 1972;90:378–83.CrossRefPubMedGoogle Scholar
  5. Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.CrossRefPubMedGoogle Scholar
  6. Avtanski D, Novaira HJ, Wu S, Romero CJ, Kineman R, Luque RM, Wondisford F, Radovick S. Both estrogen receptor alpha and beta stimulate pituitary GH gene expression. Mol Endocrinol. 2014;28:40–52.CrossRefPubMedGoogle Scholar
  7. Bachelot A, Beaufaron J, Servel N, Kedzia C, Monget P, Kelly PA, Gibori G, Binart N. Prolactin independent rescue of mouse corpus luteum life span: identification of prolactin and luteinizing hormone target genes. Am J Physiol Endocrinol Metab. 2009;297:E676–84.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bakowska JC, Morrell JI. Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J Comp Neurol. 1997;386:161–77.CrossRefPubMedGoogle Scholar
  9. Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, Clifton DK, Steiner RA. Leptin is a metabolic signal to the reproductive system. Endocrinology. 1996;137:3144–7.CrossRefPubMedGoogle Scholar
  10. Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol. 1992;135:195–202.CrossRefPubMedGoogle Scholar
  11. Baumann G. Metabolism of growth hormone (GH) and different molecular forms of GH in biological fluids. Horm Res. 1991;36(Suppl 1):5–10.CrossRefPubMedGoogle Scholar
  12. Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR. Focus on prolactin as a metabolic hormone. Trends Endocrinol Metab. 2006;17:110–6.CrossRefPubMedGoogle Scholar
  13. Benowitz NL, Jones RT, Lerner CB. Depression of growth hormone and cortisol response to insulin-induced hypoglycemia after prolonged oral delta-9-tetrahydrocannabinol administration in man. J Clin Endocrinol Metab. 1976;42:938–41.CrossRefPubMedGoogle Scholar
  14. Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res. 2004;14:309–18.CrossRefPubMedGoogle Scholar
  15. Bowers CY. Unnatural growth hormone-releasing peptide begets natural ghrelin. J Clin Endocrinol Metab. 2001;86:1464–9.CrossRefPubMedGoogle Scholar
  16. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179:77–9.CrossRefPubMedGoogle Scholar
  17. Broglio F, Koetsveld Pv P, Benso A, Gottero C, Prodam F, Papotti M, Muccioli G, Gauna C, Hofland L, Deghenghi R, Arvat E, Van Der Lely AJ, Ghigo E. Ghrelin secretion is inhibited by either somatostatin or cortistatin in humans. J Clin Endocrinol Metab. 2002;87:4829–32.CrossRefPubMedGoogle Scholar
  18. Brown RS, Kokay IC, Herbison AE, Grattan DR. Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol. 2010;518:92–102.CrossRefPubMedGoogle Scholar
  19. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.CrossRefPubMedGoogle Scholar
  20. Carre N, Binart N. Prolactin and adipose tissue. Biochimie. 2014;97:16–21.CrossRefPubMedGoogle Scholar
  21. Carro E, Pinilla L, Seoane LM, Considine RV, Aguilar E, Casanueva FF, Dieguez C. Influence of endogenous leptin tone on the estrous cycle and luteinizing hormone pulsatility in female rats. Neuroendocrinology. 1997a;66:375–7.CrossRefPubMedGoogle Scholar
  22. Carro E, Senaris R, Considine RV, Casanueva FF, Dieguez C. Regulation of in vivo growth hormone secretion by leptin. Endocrinology. 1997b;138:2203–6.CrossRefPubMedGoogle Scholar
  23. Chan YM, Butler JP, Sidhoum VF, Pinnell NE, Seminara SB. Kisspeptin administration to women: a window into endogenous kisspeptin secretion and GnRH responsiveness across the menstrual cycle. J Clin Endocrinol Metab. 2012;97:E1458–67.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet. 1996;12:318–20.CrossRefPubMedGoogle Scholar
  25. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31:139–70.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Chung GE, Kim D, Kim W, Yim JY, Park MJ, Kim YJ, Yoon JH, Lee HS. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J Hepatol. 2012;57:150–6.CrossRefPubMedGoogle Scholar
  27. Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S63–7.CrossRefPubMedGoogle Scholar
  28. Coppola A, Liu ZW, Andrews ZB, Paradis E, Roy MC, Friedman JM, Ricquier D, Richard D, Horvath TL, Gao XB, Diano S. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 2007;5:21–33.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Cordido F, Peino R, Penalva A, Alvarez CV, Casanueva FF, Dieguez C. Impaired growth hormone secretion in obese subjects is partially reversed by acipimox-mediated plasma free fatty acid depression. J Clin Endocrinol Metab. 1996;81:914–8.PubMedGoogle Scholar
  30. Cornford AS, Barkan AL, Horowitz JF. Rapid suppression of growth hormone concentration by overeating: potential mediation by hyperinsulinemia. J Clin Endocrinol Metab. 2011;96:824–30.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.CrossRefPubMedGoogle Scholar
  32. Dalterio SL, Michael SD, Macmillan BT, Bartke A. Differential effects of cannabinoid exposure and stress on plasma prolactin, growth hormone and corticosterone levels in male mice. Life Sci. 1981;28:761–6.CrossRefPubMedGoogle Scholar
  33. Daughaday WH. A personal history of the origin of the somatomedin hypothesis and recent challenges to its validity. Perspect Biol Med. 1989;32:194–211.CrossRefPubMedGoogle Scholar
  34. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100:10972–6.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab. 2005;90:6609–15.CrossRefPubMedGoogle Scholar
  36. Di Vito L, Broglio F, Benso A, Gottero C, Prodam F, Papotti M, Muccioli G, Dieguez C, Casanueva FF, Deghenghi R, Ghigo E, Arvat E. The GH-releasing effect of ghrelin, a natural GH secretagogue, is only blunted by the infusion of exogenous somatostatin in humans. Clin Endocrinol. 2002;56:643–8.CrossRefGoogle Scholar
  37. Dimitriadis GD, Raptis SA. Thyroid hormone excess and glucose intolerance. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S225–39.CrossRefPubMedGoogle Scholar
  38. Du C, Li H, Cao G, Xilingaowa, Wang C, Li C. Expression of the orexigenic peptide ghrelin and the type 1a growth hormone secretagogue receptor in sheep oocytes and pre-implantation embryos produced in vitro. Reprod Domest Anim. 2010;45:92–8.CrossRefPubMedGoogle Scholar
  39. Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci. 2013;70:841–62.CrossRefPubMedGoogle Scholar
  40. Elmquist JK. CNS regulation of energy balance and body weight: insights from rodent models. Lab Anim Sci. 1998;48:630–7.PubMedGoogle Scholar
  41. Feher P, Olah M, Bodnar I, Hechtl D, Bacskay I, Juhasz B, Nagy GM, Vecsernyes M. Dephosphorylation/inactivation of tyrosine hydroxylase at the median eminence of the hypothalamus is required for suckling-induced prolactin and adrenocorticotrop hormone responses. Brain Res Bull. 2010;82:141–5.CrossRefPubMedGoogle Scholar
  42. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35:159–94.CrossRefPubMedGoogle Scholar
  43. Fernandez-Fernandez R, Tena-Sempere M, Roa J, Castellano JM, Navarro VM, Aguilar E, Pinilla L. Direct stimulatory effect of ghrelin on pituitary release of LH through a nitric oxide-dependent mechanism that is modulated by estrogen. Reproduction. 2007;133:1223–32.CrossRefPubMedGoogle Scholar
  44. Fink G. Oestrogen and progesterone interactions in the control of gonadotrophin and prolactin secretion. J Steroid Biochem. 1988;30:169–78.CrossRefPubMedGoogle Scholar
  45. Forbes S, Li XF, Kinsey-Jones J, O’Byrne K. Effects of ghrelin on kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat. Neurosci Lett. 2009;460:143–7.CrossRefPubMedGoogle Scholar
  46. Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, Vigneri R. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem. 2008;114:23–37.CrossRefPubMedGoogle Scholar
  47. Gahete MD, Vazquez-Borrego MC, Martinez-Fuentes AJ, Tena-Sempere M, Castano JP, Luque RM. Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Mol Cell Endocrinol. 2016;438:100–6.CrossRefPubMedGoogle Scholar
  48. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One. 2009;4:e4815.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology. 2015;101:175–92.CrossRefPubMedGoogle Scholar
  50. Gaytan F, Garcia-Galiano D, Dorfman MD, Manfredi-Lozano M, Castellano JM, Dissen GA, Ojeda SR, Tena-Sempere M. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology. 2014;155:3088–97.PubMedCentralCrossRefPubMedGoogle Scholar
  51. George JT, Veldhuis JD, Roseweir AK, Newton CL, Faccenda E, Millar RP, Anderson RA. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J Clin Endocrinol Metab. 2011;96:E1228–36.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Ghigo E, Aimaretti G, Gianotti L, Bellone J, Arvat E, Camanni F. New approach to the diagnosis of growth hormone deficiency in adults. Eur J Endocrinol. 1996;134:352–6.CrossRefPubMedGoogle Scholar
  53. Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of an old hormone. Annu Rev Physiol. 2002;64:47–67.CrossRefPubMedGoogle Scholar
  54. Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci. 2006;9:398–407.CrossRefPubMedGoogle Scholar
  55. Grattan DR, Kokay IC. Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol. 2008;20:752–63.CrossRefPubMedGoogle Scholar
  56. Grattan DR, Ladyman SR, Augustine RA. Hormonal induction of leptin resistance during pregnancy. Physiol Behav. 2007;91:366–74.CrossRefPubMedGoogle Scholar
  57. Gudelsky GA, Porter JC. Release of newly synthesized dopamine into the hypophysial portal vasculature of the rat. Endocrinology. 1979;104:583–7.CrossRefPubMedGoogle Scholar
  58. Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science. 1982;218:585–7.CrossRefPubMedGoogle Scholar
  59. Hardie LJ, Rayner DV, Holmes S, Trayhurn P. Circulating leptin levels are modulated by fasting, cold exposure and insulin administration in lean but not Zucker (fa/fa) rats as measured by ELISA. Biochem Biophys Res Commun. 1996;223:660–5.CrossRefPubMedGoogle Scholar
  60. Harris AR, Fang SL, Azizi F, Lipworth L, Vagenakis AG, Barverman LE. Effect of starvation on hypothalamic-pituitary-thyroid function in the rat. Metabolism. 1978;27:1074–83.CrossRefPubMedGoogle Scholar
  61. Hashimoto K, Ishida E, Miura A, Ozawa A, Shibusawa N, Satoh T, Okada S, Yamada M, Mori M. Human stearoyl-CoA desaturase 1 (SCD-1) gene expression is negatively regulated by thyroid hormone without direct binding of thyroid hormone receptor to the gene promoter. Endocrinology. 2013;154:537–49.CrossRefPubMedGoogle Scholar
  62. Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr. 2000;54(Suppl 1):S47–51.CrossRefPubMedGoogle Scholar
  63. Hokfelt T, Fuxe K. Effects of prolactin and ergot alkaloids on the tubero-infundibular dopamine (DA) neurons. Neuroendocrinology. 1972;9:100–22.CrossRefPubMedGoogle Scholar
  64. Hollenberg AN, Forrest D. The thyroid and metabolism: the action continues. Cell Metab. 2008;8:10–2.CrossRefPubMedGoogle Scholar
  65. Horseman ND. Prolactin, proliferation, and protooncogenes. Endocrinology. 1995;136:5249–51.CrossRefPubMedGoogle Scholar
  66. Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, Sundararajan K, Vonderhaar BK. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001;222:192–205.CrossRefPubMedGoogle Scholar
  67. Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J Clin Endocrinol Metab. 1991;73:1081–8.CrossRefPubMedGoogle Scholar
  68. Kamegai J, Wakabayashi I, Kineman RD, Frohman LA. Growth hormone-releasing hormone receptor (GHRH-R) and growth hormone secretagogue receptor (GHS-R) mRNA levels during postnatal development in male and female rats. J Neuroendocrinol. 1999;11:299–306.CrossRefPubMedGoogle Scholar
  69. Kanematsu S, Hilliard J, Sawyer CH. Effect of reserpine on pituitary prolactin content and its hypothalamic site of action in the rabbit. Acta Endocrinol. 1963;44:467–74.PubMedGoogle Scholar
  70. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60:2441–9.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, Schurmann A, Joost HG, Jandacek RJ, Hale JE, Heiman ML, Tschop MH. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med. 2009;15:741–5.PubMedCentralCrossRefPubMedGoogle Scholar
  72. Klieverik LP, Coomans CP, Endert E, Sauerwein HP, Havekes LM, Voshol PJ, Rensen PC, Romijn JA, Kalsbeek A, Fliers E. Thyroid hormone effects on whole-body energy homeostasis and tissue-specific fatty acid uptake in vivo. Endocrinology. 2009a;150:5639–48.CrossRefPubMedGoogle Scholar
  73. Klieverik LP, Janssen SF, van Riel A, Foppen E, Bisschop PH, Serlie MJ, Boelen A, Ackermans MT, Sauerwein HP, Fliers E, Kalsbeek A. Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci U S A. 2009b;106:5966–71.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Knuth UA, Friesen HG. Starvation induced anoestrus: effect of chronic food restriction on body weight, its influence on oestrous cycle and gonadotrophin secretion in rats. Acta Endocrinol. 1983;104:402–9.PubMedGoogle Scholar
  75. Koerker DJ, Ruch W, Chideckel E, Palmer J, Goodner CJ, Ensinck J, Gale CC. Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science. 1974;184:482–4.CrossRefPubMedGoogle Scholar
  76. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.CrossRefPubMedGoogle Scholar
  77. Kokka N, Garcia JF. Effects of delta 9-THC on growth hormone and ACTH secretion in rats. Life Sci. 1974;15:329–38.CrossRefPubMedGoogle Scholar
  78. Kopchick JJ, Parkinson C, Stevens EC, Trainer PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev. 2002;23:623–46.CrossRefPubMedGoogle Scholar
  79. Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2006;7:225–35.CrossRefPubMedGoogle Scholar
  80. Laurberg P, Knudsen N, Andersen S, Carle A, Pedersen IB, Karmisholt J. Thyroid function and obesity. Eur Thyroid J. 2012;1:159–67.PubMedCentralCrossRefPubMedGoogle Scholar
  81. Lebrethon MC, Aganina A, Fournier M, Gerard A, Parent AS, Bourguignon JP. Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty. J Neuroendocrinol. 2007;19:181–8.CrossRefPubMedGoogle Scholar
  82. Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138:2569–76.CrossRefPubMedGoogle Scholar
  83. Leon S, Tena-Sempere M. Dissecting the roles of gonadotropin-inhibitory hormone in mammals: studies using pharmacological tools and genetically modified mouse models. Front Endocrinol. 2015;6:189.Google Scholar
  84. Liu YY, Brent GA. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol Metab. 2010;21:166–73.CrossRefPubMedGoogle Scholar
  85. Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013;20:3–11.CrossRefPubMedGoogle Scholar
  86. Lopez M, Seoane L, Tovar S, Senaris RM, Dieguez C. Thyroid status regulates CART but not AgRP mRNA levels in the rat hypothalamus. Neuroreport. 2002;13:1775–9.CrossRefPubMedGoogle Scholar
  87. Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, Martinez de Morentin PB, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Dieguez C, Vidal-Puig A. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16:1001–8.PubMedCentralCrossRefPubMedGoogle Scholar
  88. Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology. 1998;139:4102–7.CrossRefPubMedGoogle Scholar
  89. Luque RM, Gahete MD, Valentine RJ, Kineman RD. Examination of the direct effects of metabolic factors on somatotrope function in a non-human primate model, Papio anubis. J Mol Endocrinol. 2006;37:25–38.CrossRefPubMedGoogle Scholar
  90. MacLeod RM, Fontham EH, Lehmeyer JE. Prolactin and growth hormone production as influenced by catecholamines and agents that affect brain catecholamines. Neuroendocrinology. 1970;6:283–94.CrossRefPubMedGoogle Scholar
  91. Martin-Calderon JL, Munoz RM, Villanua MA, del Arco I, Moreno JL, de Fonseca FR, Navarro M. Characterization of the acute endocrine actions of (-)-11-hydroxy-delta8-tetrahydrocannabinol-dimethylheptyl (HU-210), a potent synthetic cannabinoid in rats. Eur J Pharmacol. 1998;344:77–86.CrossRefPubMedGoogle Scholar
  92. Martinez de Mena R, Scanlan TS, Obregon MJ. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology. 2010;151:5074–83.CrossRefPubMedGoogle Scholar
  93. Matsuo H, Baba Y, Nair RM, Arimura A, Schally AV. Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem Biophys Res Commun. 1971;43:1334–9.CrossRefPubMedGoogle Scholar
  94. Mayo KE, Vale W, Rivier J, Rosenfeld MG, Evans RM. Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature. 1983;306:86–8.CrossRefPubMedGoogle Scholar
  95. Meinhardt UJ, Ho KK. Modulation of growth hormone action by sex steroids. Clin Endocrinol. 2006;65:413–22.CrossRefGoogle Scholar
  96. Millar RP. GnRHs and GnRH receptors. Anim Reprod Sci. 2005;88:5–28.CrossRefPubMedGoogle Scholar
  97. Moldrup A, Petersen ED, Nielsen JH. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells. Endocrinology. 1993;133:1165–72.CrossRefPubMedGoogle Scholar
  98. Moore BJ, Gerardo-Gettens T, Horwitz BA, Stern JS. Hyperprolactinemia stimulates food intake in the female rat. Brain Res Bull. 1986;17:563–9.CrossRefPubMedGoogle Scholar
  99. Mounzih K, Lu R, Chehab FF. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology. 1997;138:1190–3.CrossRefPubMedGoogle Scholar
  100. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.PubMedCentralCrossRefPubMedGoogle Scholar
  101. Nagano M, Chastre E, Choquet A, Bara J, Gespach C, Kelly PA. Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract. Am J Physiol. 1995;268:G431–42.PubMedGoogle Scholar
  102. Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J, Kelly PA, Kopchick JJ, Ormandy CJ, Ling C, Billig H. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun. 2005;331:1120–6.CrossRefPubMedGoogle Scholar
  103. Norman C, Rollene N, Weist SM, Wigham JR, Erickson D, Miles JM, Bowers CY, Veldhuis JD. Short-term estradiol supplementation potentiates low-dose ghrelin action in the presence of GHRH or somatostatin in older women. J Clin Endocrinol Metab. 2014;99:E73–80.CrossRefPubMedGoogle Scholar
  104. Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev. 2009;30:494–535.PubMedCentralCrossRefPubMedGoogle Scholar
  105. Oppenheimer JH, Schwartz HL, Lane JT, Thompson MP. Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Invest. 1991;87:125–32.PubMedCentralCrossRefPubMedGoogle Scholar
  106. Overgaard A, Ruiz-Pino F, Castellano JM, Tena-Sempere M, Mikkelsen JD. Disparate changes in kisspeptin and neurokinin B expression in the arcuate nucleus after sex steroid manipulation reveal differential regulation of the two KNDy peptides in rats. Endocrinology. 2014;155:3945–55.CrossRefPubMedGoogle Scholar
  107. Palmblad J, Levi L, Burger A, Melander A, Westgren U, von Schenck H, Skude G. Effects of total energy withdrawal (fasting) on the levels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3, and rT3 in healthy males. Acta Med Scand. 1977;201:15–22.CrossRefPubMedGoogle Scholar
  108. Park EA, Song S, Vinson C, Roesler WJ. Role of CCAAT enhancer-binding protein beta in the thyroid hormone and cAMP induction of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem. 1999;274:211–7.CrossRefPubMedGoogle Scholar
  109. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–98.CrossRefPubMedGoogle Scholar
  110. Patel YC, Greenwood MT, Panetta R, Demchyshyn L, Niznik H, Srikant CB. The somatostatin receptor family. Life Sci. 1995;57:1249–65.CrossRefPubMedGoogle Scholar
  111. Pavlovic D, Pekic S, Stojanovic M, Zivkovic V, Djurovic B, Jovanovic V, Miljic N, Medic-Stojanoska M, Doknic M, Miljic D, Djurovic M, Casanueva F, Popovic V. Chronic cognitive sequelae after traumatic brain injury are not related to growth hormone deficiency in adults. Eur J Neurol. 2010;17:696–702.CrossRefPubMedGoogle Scholar
  112. Pearce EN. Thyroid hormone and obesity. Curr Opin Endocrinol Diabetes Obes. 2012;19:408–13.CrossRefPubMedGoogle Scholar
  113. Pi XJ, Grattan DR. Distribution of prolactin receptor immunoreactivity in the brain of estrogen-treated, ovariectomized rats. J Comp Neurol. 1998;394:462–74.CrossRefPubMedGoogle Scholar
  114. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012;92:1235–316.CrossRefPubMedGoogle Scholar
  115. Plant TM. 60 YEARS OF NEUROENDOCRINOLOGY: the hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015;226:T41–54.PubMedCentralCrossRefPubMedGoogle Scholar
  116. Popovic V, Miljic D, Micic D, Damjanovic S, Arvat E, Ghigo E, Dieguez C, Casanueva FF. Ghrelin main action on the regulation of growth hormone release is exerted at hypothalamic level. J Clin Endocrinol Metab. 2003;88:3450–3.CrossRefPubMedGoogle Scholar
  117. Reichlin S. The effect of dehydration, starvation, and pitressin injections on thyroid activity in the rat. Endocrinology. 1957;60:470–87.CrossRefPubMedGoogle Scholar
  118. Reichlin S, Saperstein R, Jackson IM, Boyd AE 3rd, Patel Y. Hypothalamic hormones. Annu Rev Physiol. 1976;38:389–424.CrossRefPubMedGoogle Scholar
  119. Rettori V, Aguila MC, Gimeno MF, Franchi AM, McCann SM. In vitro effect of delta 9-tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E2. Proc Natl Acad Sci U S A. 1990;87:10063–6.PubMedCentralCrossRefPubMedGoogle Scholar
  120. Ribeiro MO, Bianco SD, Kaneshige M, Schultz JJ, Cheng SY, Bianco AC, Brent GA. Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis. Endocrinology. 2010;151:432–40.CrossRefPubMedGoogle Scholar
  121. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978;253:2769–76.PubMedGoogle Scholar
  122. Roa J. Role of GnRH neurons and their neuronal afferents as key integrators between food intake regulatory signals and the control of reproduction. Int J Endocrinol. 2013;2013:518046.PubMedCentralCrossRefPubMedGoogle Scholar
  123. Romano N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, Tronche F, Bonnefont X, Le Tissier P, Bunn SJ, Grattan DR, Mollard P, Martin AO. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci. 2013;33:4424–33.CrossRefPubMedGoogle Scholar
  124. Romero CJ, Ng Y, Luque RM, Kineman RD, Koch L, Bruning JC, Radovick S. Targeted deletion of somatotroph insulin-like growth factor-I signaling in a cell-specific knockout mouse model. Mol Endocrinol. 2010;24:1077–89.PubMedCentralCrossRefPubMedGoogle Scholar
  125. Sapsford TJ, Kokay IC, Ostberg L, Bridges RS, Grattan DR. Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol. 2012;520:1062–77.PubMedCentralCrossRefPubMedGoogle Scholar
  126. Sassolas G. Growth hormone-releasing hormone: past and present. Horm Res. 2000;53(Suppl 3):88–92.PubMedGoogle Scholar
  127. Savastano S, Di Somma C, Barrea L, Colao A. The complex relationship between obesity and the somatropic axis: the long and winding road. Growth Horm IGF Res. 2014;24:221–6.CrossRefPubMedGoogle Scholar
  128. Scarth JP. Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review. Xenobiotica. 2006;36:119–218.CrossRefPubMedGoogle Scholar
  129. Seeburg PH, Adelman JP. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature. 1984;311:666–8.CrossRefPubMedGoogle Scholar
  130. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349:1614–27.CrossRefPubMedGoogle Scholar
  131. Seoane LM, Tovar S, Baldelli R, Arvat E, Ghigo E, Casanueva FF, Dieguez C. Ghrelin elicits a marked stimulatory effect on GH secretion in freely-moving rats. Eur J Endocrinol. 2000;143:R7–9.CrossRefPubMedGoogle Scholar
  132. Seoane LM, Lopez M, Tovar S, Casanueva FF, Senaris R, Dieguez C. Agouti-related peptide, neuropeptide Y, and somatostatin-producing neurons are targets for ghrelin actions in the rat hypothalamus. Endocrinology. 2003;144:544–51.CrossRefPubMedGoogle Scholar
  133. Seoane LM, Al-Massadi O, Lage M, Dieguez C, Casanueva FF. Ghrelin: from a GH-secretagogue to the regulation of food intake, sleep and anxiety. Pediatr Endocrinol Rev. 2004;1(Suppl 3):432–7.PubMedGoogle Scholar
  134. Seoane LM, Al-Massadi O, Barreiro F, Dieguez C, Casanueva FF. Growth hormone and somatostatin directly inhibit gastric ghrelin secretion. An in vitro organ culture system. J Endocrinol Invest. 2007a;30:RC22–5.CrossRefPubMedGoogle Scholar
  135. Seoane LM, Al-Massadi O, Caminos JE, Tovar SA, Dieguez C, Casanueva FF. Sensory stimuli directly acting at the central nervous system regulate gastric ghrelin secretion. An ex vivo organ culture study. Endocrinology. 2007b;148:3998–4006.CrossRefPubMedGoogle Scholar
  136. Shupnik MA, Ardisson LJ, Meskell MJ, Bornstein J, Ridgway EC. Triiodothyronine (T3) regulation of thyrotropin subunit gene transcription is proportional to T3 nuclear receptor occupancy. Endocrinology. 1986;118:367–71.CrossRefPubMedGoogle Scholar
  137. Siler TM, VandenBerg G, Yen SS, Brazeau P, Vale W, Guillemin R. Inhibition of growth hormone release in humans by somatostatin. J Clin Endocrinol Metab. 1973;37:632–4.CrossRefPubMedGoogle Scholar
  138. Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol Rev. 2006;86:435–64.CrossRefPubMedGoogle Scholar
  139. Sonigo C, Bouilly J, Carre N, Tolle V, Caraty A, Tello J, Simony-Conesa FJ, Millar R, Young J, Binart N. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest. 2012;122:3791–5.PubMedCentralCrossRefPubMedGoogle Scholar
  140. Strata A, Ugolotti G, Contini C, Magnati G, Pugnoli C, Tirelli F, Zuliani U. Thyroid and obesity: survey of some function tests in a large obese population. Int J Obes. 1978;2:333–40.PubMedGoogle Scholar
  141. Suh JH, Sieglaff DH, Zhang A, Xia X, Cvoro A, Winnier GE, Webb P. SIRT1 is a direct coactivator of thyroid hormone receptor beta1 with gene-specific actions. PLoS One. 2013;8:e70097.PubMedCentralCrossRefPubMedGoogle Scholar
  142. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol. 2003;23:7973–81.PubMedCentralCrossRefPubMedGoogle Scholar
  143. Tannenbaum GS, Epelbaum J, Bowers CY. Interrelationship between the novel peptide ghrelin and somatostatin/growth hormone-releasing hormone in regulation of pulsatile growth hormone secretion. Endocrinology. 2003;144:967–74.CrossRefPubMedGoogle Scholar
  144. Tena-Sempere M, Barreiro ML, Gonzalez LC, Gaytan F, Zhang FP, Caminos JE, Pinilla L, Casanueva FF, Dieguez C, Aguilar E. Novel expression and functional role of ghrelin in rat testis. Endocrinology. 2002;143:717–25.CrossRefPubMedGoogle Scholar
  145. Thakran S, Sharma P, Attia RR, Hori RT, Deng X, Elam MB, Park EA. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J Biol Chem. 2013;288:807–18.CrossRefPubMedGoogle Scholar
  146. Tovar S, Vazquez MJ, Navarro VM, Fernandez-Fernandez R, Castellano JM, Vigo E, Roa J, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M. Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology. 2006;147:2696–704.CrossRefPubMedGoogle Scholar
  147. Trott JF, Schennink A, Petrie WK, Manjarin R, VanKlompenberg MK, Hovey RC. Triennial lactation symposium: prolactin: the multifaceted potentiator of mammary growth and function. J Anim Sci. 2012;90:1674–86.CrossRefPubMedGoogle Scholar
  148. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.CrossRefPubMedGoogle Scholar
  149. van der Lely AJ, Tschop M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev. 2004;25:426–57.CrossRefPubMedGoogle Scholar
  150. Varela L, Martinez-Sanchez N, Gallego R, Vazquez MJ, Roa J, Gandara M, Schoenmakers E, Nogueiras R, Chatterjee K, Tena-Sempere M, Dieguez C, Lopez M. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol. 2012;227:209–22.CrossRefPubMedGoogle Scholar
  151. Veldhuis JD, Metzger DL, Martha PM Jr, Mauras N, Kerrigan JR, Keenan B, Rogol AD, Pincus SM. Estrogen and testosterone, but not a nonaromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab. 1997;82:3414–20.PubMedGoogle Scholar
  152. Veldhuis JD, Keenan DM, Pincus SM. Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev. 2008;29:823–64.PubMedCentralCrossRefPubMedGoogle Scholar
  153. Walsh RJ, Slaby FJ, Posner BI. A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology. 1987;120:1846–50.CrossRefPubMedGoogle Scholar
  154. Watanobe H. Leptin directly acts within the hypothalamus to stimulate gonadotropin-releasing hormone secretion in vivo in rats. J Physiol. 2002;545:255–68.PubMedCentralCrossRefPubMedGoogle Scholar
  155. Weber RF, de Greef WJ, de Koning J, Vreeburg JT. LH-RH and dopamine levels in hypophysial stalk plasma and their relationship to plasma gonadotrophins and prolactin levels in male rats bearing a prolactin- and adrenocorticotrophin-secreting pituitary tumor. Neuroendocrinology. 1983;36:205–10.CrossRefPubMedGoogle Scholar
  156. Weintraub BD, Gesundheit N, Taylor T, Gyves PW. Effect of TRH on TSH glycosylation and biological action. Ann N Y Acad Sci. 1989;553:205–13.CrossRefPubMedGoogle Scholar
  157. Wierman ME, Kiseljak-Vassiliades K, Tobet S. Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol. 2011;32:43–52.CrossRefPubMedGoogle Scholar
  158. Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R, Moncrieffe M, Thabet K, Cox HJ, Yancopoulos GD, Wiegand SJ, Sleeman MW. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A. 2004;101:8227–32.PubMedCentralCrossRefPubMedGoogle Scholar
  159. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.CrossRefPubMedGoogle Scholar
  160. Xia SF, Duan XM, Hao LY, Li LT, Cheng XR, Xie ZX, Qiao Y, Li LR, Tang X, Shi YH, Le GW. Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metab Clin Exp. 2015;64:566–79.CrossRefPubMedGoogle Scholar
  161. Yi CX, Heppner KM, Kirchner H, Tong J, Bielohuby M, Gaylinn BD, Muller TD, Bartley E, Davis HW, Zhao Y, Joseph A, Kruthaupt T, Ottaway N, Kabra D, Habegger KM, Benoit SC, Bidlingmaier M, Thorner MO, Perez-Tilve D, Tschop MH, Pfluger PT. The GOAT-ghrelin system is not essential for hypoglycemia prevention during prolonged calorie restriction. PLoS One. 2012;7:e32100.PubMedCentralCrossRefPubMedGoogle Scholar
  162. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, Jones JE, Deysher AE, Waxman AR, White RD, Williams TD, Lachey JL, Seeley RJ, Lowell BB, Elmquist JK. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest. 2005;115:3564–72.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luisa Maria Seoane
    • 1
    • 2
  • Sulay Tovar
    • 2
    • 3
  • Carlos Dieguez
    • 2
    • 3
  1. 1.Grupo Fisiopatología Endocrina, IDISComplejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS)Santiago de CompostelaSpain
  2. 2.CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos IIIMajadahondaSpain
  3. 3.Department of Physiology, CIMUSUniversity of Santiago de Compostela-Instituto de Investigación SanitariaSantiago de CompostelaSpain

Personalised recommendations