Skip to main content

Epididymal Sperm Transport and Fertilization

  • Reference work entry
  • First Online:
Endocrinology of the Testis and Male Reproduction

Part of the book series: Endocrinology ((ENDOCR))

Abstract

In order to acquire progressive motility, complete maturation and compaction of chromatin, regulate their volume, and acquire molecules necessary for fertilization, spermatozoa released from the testis must transit through the epididymis, a long convoluted tubule that connects the efferent ducts to the vas deferens, where they undergo several molecular modifications. Sperm modifications occurring during transit in the three segments that compose the epididymis (caput, corpus, and cauda) are accomplished by epididymal epithelium secretions, including epididymosomes (extracellular microvesicles enriched in cholesterol and proteins), miRNA, and other macromolecules. Epididymal pH and electrolytes composition of the luminal fluid are also important for a correct sperm maturation. Epididymal secretions are regulated by a variety of factors, mostly androgens and estrogens, to create a different luminal environment in each epididymal segment supporting progressive sperm maturation and allowing maintenance of sperm viability and motility during storage in the cauda. Finally, epididymal contraction allows sperm emission at ejaculation. Overall, the role of epididymis on the development of sperm functions is essential for male reproduction, and alterations in any of its functions may lead to subfertility or infertility. Due to its importance for a successful male reproductive function, the epididymis appears to be a promising target for post-testicular male contraception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abella DF, Da Costa M, Guérin Y, Dacheux JL. Fertility of undiluted ram epididymal spermatozoa stored for several days at 4°C. Animal. 2015;9(2):313–9.

    Article  PubMed  Google Scholar 

  • Andersen OM, Yeung CH, Vorum H, Wellner M, Andreassen TK, Erdmann B, Mueller EC, Herz J, Otto A, Cooper TG, Willnow TE. Essential role of the apolipoprotein E receptor-2 in sperm development. J Biol Chem. 2003;278(26):23989–95.

    Article  CAS  PubMed  Google Scholar 

  • Annison EF, Scott TW, Waites GM. The role of glucose and acetate in the oxidative metabolism of the testis and epididymis of the ram. Biochem J. 1963;88:482–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger J, Dadoune JP. Nuclear status of human sperm cells by transmission electron microscopy and image cytometry: changes in nuclear shape and chromatin texture during spermiogenesis and epididymal transit. Biol Reprod. 1993;49(1):166–75.

    Article  CAS  PubMed  Google Scholar 

  • Aveldaño MI, Rotstein NP, Vermouth NT. Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem J. 1992;283(Pt 1):235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Awano M, Kawaguchi A, Mohri H. Lipid composition of hamster epididymal spermatozoa. J Reprod Fertil. 1993;99(2):375–83.

    Article  CAS  PubMed  Google Scholar 

  • Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16(3):123–9. Review.

    Google Scholar 

  • Badran HH, Hermo LS. Expression and regulation of aquaporins 1, 8, and 9 in the testis, efferent ducts, and epididymis of adult rats and during postnatal development. J Androl. 2002;23(3):358–73.

    CAS  PubMed  Google Scholar 

  • Balhorn R, Weston S, Thomas C, Wyrobek AJ. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res. 1984;150(2):298–308.

    Article  CAS  PubMed  Google Scholar 

  • Bedford JM. Effects of elevated temperature on the epididymis and testis: experimental studies. Adv Exp Med Biol. 1991;286:19–32. Review.

    Google Scholar 

  • Belleannee C, Belghazi M, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, Dacheux F. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics. 2011;11(10):1952–64.

    Article  CAS  PubMed  Google Scholar 

  • Belleannée C, Calvo E, Thimon V, Cyr DG, Légaré C, Garneau L, Sullivan R. Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One. 2012;7(4):e34996.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belleannée C, Calvo É, Caballero J, Sullivan R. Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis. Biol Reprod. 2013;89(2):30.

    Article  PubMed  Google Scholar 

  • Björkgren I, Saastamoinen L, Krutskikh A, Huhtaniemi I, Poutanen M, Sipilä P. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One. 2012;7(6):e38457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Björkgren I, Gylling H, Turunen H, Huhtaniemi I, Strauss L, Poutanen M, Sipilä P. Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane. FASEB J. 2015;29(2):433–42.

    Article  PubMed  Google Scholar 

  • Björkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I, Poutanen M, Wachten D, Sipilä P. Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol. 2016;427:143–54.

    Article  PubMed  Google Scholar 

  • Brooks DE. Epididymal and testicular temperature in the unrestrained conscious rat. J Reprod Fertil. 1973;35(1):157–60.

    Article  CAS  PubMed  Google Scholar 

  • Browne JA, Yang R, Leir SH, Eggener SE, Harris A. Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod. 2016;22(2):69–82.

    Article  PubMed  Google Scholar 

  • Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, Schoor M, Gottwald U, Habenicht U, Drevet JR, Vernet P. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119(7):2074–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JC, Oude-Elferink RP. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Front Physiol. 2014;5:42. Review.

    Google Scholar 

  • Chu C, Zheng G, Hu S, Zhang J, Xie S, Ma W, Ni M, Tang C, Zhou L, Zhou Y, Liu M, Li Y, Zhang Y. Epididymal region-specific miRNA expression and DNA methylation and their roles in controlling gene expression in rats. PLoS One. 2015;10(4):e0124450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper TG. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl. 1998;53:119–36. Review.

    Google Scholar 

  • Cooper TG, Yeung CH. Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Tech. 2003;61(1):28–38. Review.

    Google Scholar 

  • Cooper TG, Weidner W, Nieschlag E. The influence of inflammation of the human male genital tract on secretion of the seminal markers alpha-glucosidase, glycerophosphocholine, carnitine, fructose and citric acid. Int J Androl. 1990;13(5):329–36.

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG, Yeung CH, Jones R, Orgebin-Crist MC, Robaire B. Rebuttal of a role or the epididymis in sperm quality control by phagocytosis of defective sperm. J Cell Sci. 2002;115(Pt 1):5–7.

    CAS  PubMed  Google Scholar 

  • Cooper TG, Wagenfeld A, Cornwall GA, Hsia N, Chu ST, Orgebin-Crist MC, Drevet J, Vernet P, Avram C, Nieschlag E, Yeung CH. Gene and protein expression in the epididymis of infertile c-ros receptor tyrosine kinase-deficient mice. Biol Reprod. 2003;69(5):1750–62.

    Article  CAS  PubMed  Google Scholar 

  • Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15(2):213–27. Review.

    Google Scholar 

  • Da Ros VG, Muñoz MW, Battistone MA, Brukman NG, Carvajal G, Curci L, Gómez-ElIas MD, Cohen DB, Cuasnicu PS. From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization. Asian J Androl. 2015;17(5):711–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva N, Silberstein C, Beaulieu V, Piétrement C, Van Hoek AN, Brown D, Breton S. Postnatal expression of aquaporins in epithelial cells of the rat epididymis. Biol Reprod. 2006;74(2):427–38.

    Article  CAS  PubMed  Google Scholar 

  • Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2013;147(2):R27–42. Review.

    Google Scholar 

  • Dacheux JL, Castella S, Gatti JL, Dacheux F. Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology. 2005;63(2):319–41. Review. Erratum in: Theriogenology. 2005;64(5):1244.

    Google Scholar 

  • Davies B, Baumann C, Kirchhoff C, Ivell R, Nubbemeyer R, Habenicht UF, Theuring F, Gottwald U. Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol Cell Biol. 2004;24(19):8642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jonge C. Biological basis for human capacitation. Hum Reprod Update. 2005;11(3):205–14. Review.

    Google Scholar 

  • Dorin JR, Barratt CL. Importance of β-defensins in sperm function. Mol Hum Reprod. 2014;20(9):821–6. Review.

    Google Scholar 

  • Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol. 2006;250(1–2):70–9. Review.

    Google Scholar 

  • Dyson ALMB, Orgebin-Crist MC. Effect of hypophysectomy, castration and androgen replacement upon the fertilizing ability of rat epididymal spermatozoa. Endocrinology. 1973;93(2):391–402.

    Article  CAS  PubMed  Google Scholar 

  • Ecroyd H, Belghazi M, Dacheux JL, Gatti JL. The epididymal soluble prion protein forms a high-molecular-mass complex in association with hydrophobic proteins. Biochem J. 2005;392(Pt 1):211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Badawi A, Schenk EA. The distribution of cholinergic and adrenergic nerves in the mammalian epididymis: a comparative histochemical study. Am J Anat. 1967;121(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  • Evans RW, Setchell BP. Lipid changes in boar spermatozoa during epididymal maturation with some observations on the flow and composition of boar rete testis fluid. J Reprod Fertil. 1979;57(1):189–96.

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Robaire B. Orchidectomy induces a wave of apoptotic cell death in the epididymis. Endocrinology. 1998;139(4):2128–36.

    Article  CAS  PubMed  Google Scholar 

  • Fibbi B, Filippi S, Morelli A, Vignozzi L, Silvestrini E, Chavalmane A, De Vita G, Marini M, Gacci M, Manieri C, Vannelli GB, Maggi M. Estrogens regulate humans and rabbit epididymal contractility through the RhoA/Rho-kinase pathway. J Sex Med. 2009;6(8):2173–86.

    Article  CAS  PubMed  Google Scholar 

  • Foldesy RG, Bedford JM. Biology of the scrotum. I. Temperature and androgen as determinants of the sperm storage capacity of the rat cauda epididymidis. Biol Reprod. 1982;26(4):673–82.

    Article  CAS  PubMed  Google Scholar 

  • Fraile B, Martin R, De Miguel MP, Arenas MI, Bethencourt FR, Peinado F, Paniagua R, Santamaria L. Light and electron microscopic immunohistochemical localization of protein gene product 9.5 and ubiquitin immunoreactivities in the human epididymis and vas deferens. Biol Reprod. 1996;55(2):291–7.

    Article  CAS  PubMed  Google Scholar 

  • Free MJ, Schluntz GA, Jaffe RA. Respiratory gas tensions in tissues and fluids of the male rat reproductive tract. Biol Reprod. 1976;14(4):481–8.

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Lessard C, Sullivan R. Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod. 2002;67(1):308–13.

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Lessard C, Sullivan R. Polyol pathway along the bovine epididymis. Mol Reprod Dev. 2004;69(4):448–56.

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Légaré C, Saez F, Sullivan R. Macrophage migration inhibitory factor in the human epididymis and semen. Mol Hum Reprod. 2005;11(8):575–82.

    Article  CAS  PubMed  Google Scholar 

  • Gatti JL, Castella S, Dacheux F, Ecroyd H, Métayer S, Thimon V, Dacheux JL. Post-testicular sperm environment and fertility. Anim Reprod Sci. 2004;82–83:321–39. Review.

    Google Scholar 

  • Guyonnet B, Dacheux F, Dacheux JL, Gatti JL. The epididymal transcriptome and proteome provide some insights into new epididymal regulations. J Androl. 2011;32(6):651–64. doi:10.2164/jandrol.111.013086. Review.

    Article  CAS  PubMed  Google Scholar 

  • Haidl G, Opper C. Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation. Hum Reprod. 1997;12(12):2720–3.

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Hadley J, Doman T. Correlation between changes in rat sperm membrane lipids, protein, and the membrane physical state during epididymal maturation. J Androl. 1991;12(1):76–87.

    CAS  PubMed  Google Scholar 

  • Han Z, Wang Z, Cheng G, Liu B, Li P, Li J, Wang W, Yin C, Zhang W. Presence, localization, and origin of clusterin in normal human spermatozoa. J Assist Reprod Genet. 2012;29(8):751–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsh AV, Dean NL, Mohan PJ, Shaker AG, Bekir JS. Natural spermatoceles in irreversible obstructive azoospermia–reservoirs of viable spermatozoa for assisted conception. Hum Reprod. 1996;11(9):1919–22.

    Google Scholar 

  • Huszar G, Zeyneloglu HB, Vigue L. Cellular maturity and fertilising potential of sperm populations in natural and assisted reproduction. In: Gagnon C, editor. The male gamete: from basic knowledge to clinical applications. Illinois: Cache River Press; 1999. p. 385–96.

    Google Scholar 

  • Ilio KY, Hess RA. Structure and function of the ductuli efferentes: a review. Microsc Res Tech. 1994;29(6):432–67. Review.

    Google Scholar 

  • Jenkins AD, Lechene CP, Howards SS. Concentrations of seven elements in the intraluminal fluids of the rat seminiferous tubules, rate testis, and epididymis. Biol Reprod. 1980;23(5):981–7.

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Varner DD. Effect of daily spermatozoan production but not age on transit time of spermatozoa through the human epididymis. Biol Reprod. 1988;39(4):812–7.

    Article  CAS  PubMed  Google Scholar 

  • Jones R. Sperm survival versus degradation in the mammalian epididymis: a hypothesis. Biol Reprod. 2004;71(5):1405–11. Review.

    Google Scholar 

  • Jones RC, Dacheux JL, Nixon B, Ecroyd HW. Role of the epididymis in sperm competition. Asian J Androl. 2007;9(4):493–9. Review.

    Google Scholar 

  • Joshi CS, Suryawanshi AR, Khan SA, Balasinor NH, Khole VV. Liprin α3: a putative estrogen regulated acrosomal protein. Histochem Cell Biol. 2013;139(4):535–48.

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, Nakanishi T, Kashiwabara S, Baba T. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod. 2009;81(5):939–47.

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff C, Hale G. Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol Hum Reprod. 1996;2(3):177–84. Review.

    Google Scholar 

  • Kirchhoff C. Molecular characterization of epididymal proteins. Rev Reprod. 1998;3(2):86–95. Review.

    Article  CAS  PubMed  Google Scholar 

  • Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, Pilder SH, Cuasnicu P, Breton S, Visconti PE. cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit. Dev Biol. 2012;369(1):43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA, Smithies O. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A. 1998;95(26):15677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krutskikh A, Poliandri A, Cabrera-Sharp V, Dacheux JL, Poutanen M, Huhtaniemi I. Epididymal protein Rnase10 is required for post-testicular sperm maturation and male fertility. FASEB J. 2012;26(10):4198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujala M, Hihnala S, Tienari J, Kaunisto K, Hästbacka J, Holmberg C, Kere J, Höglund P. Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction. 2007;133(4):775–84.

    Article  CAS  PubMed  Google Scholar 

  • Leung GP, Tse CM, Chew SB, Wong PY. Expression of multiple Na+/H+ exchanger isoforms in cultured epithelial cells from rat efferent duct and cauda epididymidis. Biol Reprod. 2001;64(2):482–90.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang DK, Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod. 2012;86(4):99. Review.

    Google Scholar 

  • Lotti F, Maggi M. Ultrasound of the male genital tract in relation to male reproductive health. Hum Reprod Update. 2015;21(1):56–83. doi:10.1093/humupd/dmu042. Review.

    Article  PubMed  Google Scholar 

  • Lu S, Cui Y, Li X, Zhang H, Liu J, Kong B, Cai F, Chen ZJ. Association of cystic fibrosis transmembrane-conductance regulator gene mutation with negative outcome of intracytoplasmic sperm injection pregnancy in cases of congenital bilateral absence of vas deferens. Fertil Steril. 2014;101(5):1255–60.

    Article  CAS  PubMed  Google Scholar 

  • Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993;90(23):11162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Xie S, Ni M, Huang X, Hu S, Liu Q, Liu A, Zhang J, Zhang Y. MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem. 2012;287(13):10189–99.

    Article  CAS  PubMed  Google Scholar 

  • Marushige Y, Marushige K. Phosphorylation of sperm histone during spermiogenesis in mammals. Biochim Biophys Acta. 1978;518(3):440–9.

    Article  CAS  PubMed  Google Scholar 

  • Mieusset R, Quintana Casares PI, Sanchez-Partida LG, Sowerbutts SF, Zupp JL, Setchell BP. The effects of moderate heating of the testes and epididymides of rams by scrotal insulation on body temperature, respiratory rate, spermatozoa output and motility, and on fertility and embryonic survival in ewes inseminated with frozen semen. Ann N Y Acad Sci. 1991;637:445–58.

    Article  CAS  PubMed  Google Scholar 

  • Moura AA, Chapman DA, Koc H, Killian GJ. Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. J Androl. 2006;27(4):534–41.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Tyl E, Deutinger J, Reinthaller A, Fischl F, Riss P, Lunglmayr G. In vitro fertilization with spermatozoa from alloplastic spermatocele. Fertil Steril. 1990;53(4):744–6.

    Article  PubMed  Google Scholar 

  • Nikolopoulou M, Soucek DA, Vary JC. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta. 1985;815(3):486–98.

    Article  CAS  PubMed  Google Scholar 

  • Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Tyagi S, Holt JE, McLaughlin EA. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol Reprod. 2015;93(4):91.

    Article  PubMed  Google Scholar 

  • Noblanc A, Kocer A, Chabory E, Vernet P, Saez F, Cadet R, Conrad M, Drevet JR. Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. J Androl. 2011;32(6):641–50. Review.

    Google Scholar 

  • Oh J, Woo JM, Choi E, Kim T, Cho BN, Park ZY, Kim YC, Kim DH, Cho C. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun. 2005;331(4):1374–83.

    Article  CAS  PubMed  Google Scholar 

  • Oh JS, Han C, Cho C. ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane. Mol Cell. 2009;28(5):441–6.

    Article  CAS  Google Scholar 

  • O'rand MG, Widgren EE, Sivashanmugam P, Richardson RT, Hall SH, French FS, VandeVoort CA, Ramachandra SG, Ramesh V, Jagannadha RA. Reversible immunocontraception in male monkeys immunized with eppin. Science. 2004;306(5699):1189–90.

    Article  PubMed  Google Scholar 

  • Parks JE, Hammerstedt RH. Development changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol Reprod. 1985;32(3):653–68.

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y, Brown D, Buck J, Levin LR, Breton S. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem. 2003;278(49):49523–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod. 2006;74(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  • Pyttel S, Nimptsch A, Böttger J, Zschörnig K, Jakop U, Wegener J, Müller K, Raymond AS, Elder B, Ensslin M, Shur BD. Loss of SED1/MFG-E8 results in altered luminal physiology in the epididymis. Mol Reprod Dev. 2010;77(6):550–63.

    Article  Google Scholar 

  • Pyttel S, Nimptsch A, Böttger J, Zschörnig K, Jakop U, Wegener J, Müller K, Paasch U, Schiller J. Changes of murine sperm phospholipid composition during epididymal maturation determined by MALDI-TOF mass spectrometry. Theriogenology. 2014;82:396–402.

    Article  CAS  PubMed  Google Scholar 

  • Raymond AS, Elder B, Ensslin M, Shur BD. Loss of SED1/MFG-E8 results in altered luminal physiology in the epididymis. Mol Reprod Dev. 2010;77(6):550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regalado F, Esponda P, Nieto A. Temperature and androgens regulate the biosynthesis of secretory proteins from rabbit cauda epididymidis. Mol Reprod Dev. 1993;36(4):448–53.

    Article  CAS  PubMed  Google Scholar 

  • Rejraji H, Sion B, Prensier G, Carreras M, Motta C, Frenoux JM, Vericel E, Grizard G, Vernet P, Drevet JR. Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol Reprod. 2006;74(6):1104–13. Erratum in: Biol Reprod. 2006;75(2):306.

    Google Scholar 

  • Robaire B, Chan P. What does the epididymis do and how does it do it? In: Hinton BT, editor. Handbook of andrology. 2nd ed. Lawrence: Allen Press; 2010. p. 10–5.

    Google Scholar 

  • Robaire B, Syntin P, Jervis K. The coming of age of the epididymis. In: Jegou B, editor. Testis, epididymis and technologies in the year 2000. New York: Springer-Verlag; 2000. p. 229–62.

    Chapter  Google Scholar 

  • Robaire B, Seenundun S, Hamzeh M, Lamour SA. Androgenic regulation of novel genes in the epididymis. Asian J Androl. 2007;9(4):545–53. Review.

    Google Scholar 

  • Rodríguez CM, Labus JC, Hinton BT. Organic cation/carnitine transporter, OCTN2, is differentially expressed in the adult rat epididymis. Biol Reprod 2002;67(1):314–319.

    Google Scholar 

  • Ruz R, Gregory M, Smith CE, Cyr DG, Lubahn DB, Hess RA, Hermo L. Expression of aquaporins in the efferent ductules, sperm counts, and sperm motility in estrogen receptor-alpha deficient mice fed lab chow versus casein. Mol Reprod Dev. 2006;73(2):226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schagdarsurengin U, Western P, Steger K, Meinhardt A. Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Semin Immunopathol. 2016;38(6):765–781. [Epub ahead of print] Review.

    Google Scholar 

  • Serre V, Robaire B. Distribution of immune cells in the epididymis of the aging Brown Norway rat is segment-specific and related to the luminal content. Biol Reprod. 1999;61(3):705–14.

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–6.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J Androl. 2015;17(5):726–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan R, Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction. 2013;146(1):R21–35. Review.

    Google Scholar 

  • Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005;35(1):1–10. Review.

    Google Scholar 

  • Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci. 2001;114(Pt 9):1665–75.

    CAS  PubMed  Google Scholar 

  • Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Yoshimoto H, Shimizu N, Li MW, Kinchen K, Vallelunga J, Lloyd KC, Nakagata N. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. Cryobiology. 2014;68(1):12–7.

    Article  PubMed  Google Scholar 

  • Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, Forti G, Baldi E, Muratori M. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31. Review.

    Google Scholar 

  • Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, Tang G, Xing H, Kays RJ, Lau T, Overstreet JW, Xu X, Bevins CL, Cherr GN. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci Transl Med. 2011;3(92):92ra65. Erratum in: Sci Transl Med. 2014;6(236):236er3. Sci Transl Med. 2011;(94):94er5.

    Google Scholar 

  • Turner TT. Resorption versus secretion in the rat epididymis. J Reprod Fertil. 1984;72(2):509–14.

    Article  CAS  PubMed  Google Scholar 

  • Turner TT. Spermatozoa are exposed to a complex microenvironment as they traverse the epididymis. Ann N Y Acad Sci. 1991;637:364–83. Review.

    Google Scholar 

  • Turner TT, Bomgardner D, Jacobs JP, Nguyen QA. Association of segmentation of the epididymal interstitium with segmented tubule function in rats and mice. Reproduction. 2003;125(6):871–8.

    Article  CAS  PubMed  Google Scholar 

  • Vignozzi L, Filippi S, Morelli A, Luconi M, Jannini E, Forti G, Maggi M. Regulation of epididymal contractility during semen emission, the first part of the ejaculatory process: a role for estrogen. J Sex Med. 2008;5(9):2010–6; Review. Erratum in: J Sex Med. 2008;5(10):2480.

    Google Scholar 

  • Vijayaraghavan S, Bhattacharyya A, Hoskins DD. Calcium uptake by bovine epididymal spermatozoa is regulated by the redox state of the mitochondrial pyridine nucleotides. Biol Reprod. 1989;40(4):744–51.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ruan K. miR-200c affects the mRNA expression of E-cadherin by regulating the mRNA level of TCF8 during post-natal epididymal development in juvenile rats. Acta Biochim Biophys Sin Shanghai. 2010a;42(9):628–34.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ruan K. miR-335 is involved in the rat epididymal development by targeting the mRNA of RASA1. Biochem Biophys Res Commun. 2010b;402(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  • Wennemuth G, Carlson AE, Harper AJ, Babcock DF. Bicarbonate actions on flagellar and Ca2+ -channel responses: initial events in sperm activation. Development. 2003;130(7):1317–26.

    Article  CAS  PubMed  Google Scholar 

  • Wong PY, Yeung CH. Absorptive and secretory functions of the perfused rat cauda epididymidis. J Physiol. 1978;275:13–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhao B, Li W, Chen Y, Liang R, Li L, Jin Y, Ruan K. MiR-200a is involved in rat epididymal development by targeting β-catenin mRNA. Acta Biochim Biophys Sin Shanghai. 2012;44(3):233–40.

    Article  PubMed  Google Scholar 

  • Xu WM, Shi QX, Chen WY, Zhou CX, Ni Y, Rowlands DK, Yi Liu G, Zhu H, Ma ZG, Wang XF, Chen ZH, Zhou SC, Dong HS, Zhang XH, Chung YW, Yuan YY, Yang WX, Chan HC. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci U S A. 2007;104(23):9816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yenugu S, Hamil KG, French FS, Hall SH. Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Reprod Biol Endocrinol. 2004;2:61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Clarke L, Nie R, Carnes K, Lai LW, Lien YH, Verkman A, Lubahn D, Fisher JS, Katzenellenbogen BS, Hess RA. Estrogen action and male fertility: roles of the sodium/hydrogen exchanger-3 and fluid reabsorption in reproductive tract function. Proc Natl Acad Sci U S A. 2001;98(24):14132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Nie R, Prins GS, Saunders PT, Katzenellenbogen BS, Hess RA. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl. 2002;23(6):870–81.

    CAS  PubMed  Google Scholar 

  • Zhou YS, Webb S, Lettice L, Tardif S, Kilanowski F, Tyrrell C, Macpherson H, Semple F, Tennant P, Baker T, Hart A, Devenney P, Perry P, Davey T, Barran P, Barratt CL, Dorin JR. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice. PLoS Genet. 2013;9(10):e1003826.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Baldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Marchiani, S., Tamburrino, L., Muratori, M., Baldi, E. (2017). Epididymal Sperm Transport and Fertilization. In: Simoni, M., Huhtaniemi, I. (eds) Endocrinology of the Testis and Male Reproduction. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-44441-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44441-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44440-6

  • Online ISBN: 978-3-319-44441-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics