Skip to main content

Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acevedo R, Fernández S, Zayas C et al (2014) Bacterial outer membrane vesicles and vaccine applications. Front Immunol 5:121. doi:10.3389/fimmu.2014.00121

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumgarten T, Sperling S, Seifert J et al (2012) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78(17):6217–6224. doi:10.1128/AEM.01525-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berleman J, Auer M (2013) The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol 15(2):347–354. doi:10.1111/1462-2920.12048

    Article  CAS  PubMed  Google Scholar 

  • Berleman JE, Allen S, Danielewicz MA et al (2014) The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol 5:1–11. doi:10.3389/fmicb.2014.00474

    Article  Google Scholar 

  • Bishop DG, Work E (1965) An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 96(2):567–576. doi:10.1042/bj0960567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deatherage BL, Cooksona BT (2012) Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80(6):1948–1957. doi:10.1128/IAI.06014-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deatherage BL, Lara JC, Bergsbaken T, Barrett SLR, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72(6):1395–1407. doi:10.1111/j.1365-2958.2009.06731.x.Biogenesis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S (2016) Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 1:16107. doi:10.1038/nmicrobiol.2016.107

    Article  PubMed  Google Scholar 

  • Ellen AF, Albers SV, Huibers W et al (2008) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13(1):67–79. doi:10.1007/s00792-008-0199-x

    Article  PubMed  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94. doi:10.1128/mmbr.00031-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans A, Davey H, Cookson A, Currinn H, Cooke-Fox G, Stanczyk P, Whitworth D (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158(11):2742–2752. doi:10.1099/mic.0.060343-0

    Article  CAS  PubMed  Google Scholar 

  • Furuta N, Takeuchi H, Amano A (2009) Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 77(11):4761–4770. doi:10.1128/IAI.00841-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899

    Article  CAS  PubMed  Google Scholar 

  • Hunt S, Green J, Artymiuk P (2010) Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv Exp Med Biol 677:116–126

    Article  CAS  PubMed  Google Scholar 

  • Jin JS, Kwon S-O, Moon DC et al (2011) Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One 6(2):e17027. doi:10.1371/journal.pone.0017027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178(10):2767–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Kowashi Y, Demuth DR (2001) Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32(1):1–13. doi:10.1006/mpat.2001.0474

    Article  Google Scholar 

  • Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I (1982) Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. J Bacteriol 151(3):1523–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keane R, Berleman J (2016) The predatory life cycle of Myxococcus xanthus. Microbiology 162(1):1–11. doi:10.1099/mic.0.000208

    Article  CAS  PubMed  Google Scholar 

  • Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108. doi:10.1016/j.imlet.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  • Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol 92(4):1206–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160(2014):2109–2121. doi:10.1099/mic.0.079400-0

    Article  CAS  PubMed  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol:163–184

    Google Scholar 

  • Lee E, Choi D, Kim K, Cho Y (2008) Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27:535–555

    Article  CAS  Google Scholar 

  • Lee E-Y, Choi D-Y, Kim D-K et al (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436. doi:10.1002/pmic.200900338

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178(9):2479–2488. http://www.ncbi.nlm.nih.gov/pubmed/8626312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180(20):5478–5483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb MR, Kilner J (1979) Effect of growth medium on the relative polypeptide composition of cellular outer membrane and released outer membrane material in Escherichia coli. J Bacteriol 137(2):1031–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425. doi:10.1038/nature03925

    Article  CAS  PubMed  Google Scholar 

  • Mashburn-Warren L, McLean RJC, Whiteley M (2008a) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6(3):214–219. doi:10.1111/j.1472-4669.2008.00157.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashburn-Warren L, Howe J, Garidel P et al (2008b) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69(2):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue EJ, Krachler AM (2016) Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol:1508–1517. doi:10.1111/cmi.12655

    Google Scholar 

  • Palsdottir H, Remis JP, Schaudinn C et al (2009) Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography. J Bacteriol 191(7):2077–2082. doi:10.1128/JB.01333-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182(10):2985–2988. doi:10.1128/JB.182.10.2985-2988.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remis JP, Wei D, Gorur A et al (2014) Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ Microbiol 16(2):598–610. doi:10.1111/1462-2920.12187

    Article  CAS  PubMed  Google Scholar 

  • Rivera J, Cordero RJB, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 107(44):19002–19007. doi:10.1073/pnas.1008843107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roier S, Zingl FG, Cakar F et al (2016) A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun 7:10515. doi:10.1038/ncomms10515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rompikuntal PK, Thay B, Khan M et al (2012) Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 80(1):31–42. doi:10.1128/IAI.06069-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaber JA, Triffo WJ, Sang JS et al (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721. doi:10.1128/IAI.00586-07.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schertzer J, Whiteley M (2012) A bilayer-couple model of bacterial outer membrane vesicle. MBio 3(2):e00297–e00211. doi:10.1128/mBio.00297-11.Editor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619. doi:10.1038/nrmicro3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wai SN, Lindmark B, Söderblom T et al (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115(1):25–35. doi:10.1016/S0092-8674(03)00754-2

    Article  CAS  PubMed  Google Scholar 

  • Wensink J, Witholt B (1981) Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur J Biochem 116:331–335

    Article  CAS  PubMed  Google Scholar 

  • Work E, Knox KW, Vesk M (1966) The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann N Y Acad Sci 133:438–449. doi:10.1111/j.1749-6632.1966.tb52382.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armaity Nasarabadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Nasarabadi, A., Berleman, J.E., Auer, M. (2017). Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics