We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Bacterial Lipid Domains and Their Role in Cell Processes | SpringerLink
Skip to main content

Bacterial Lipid Domains and Their Role in Cell Processes

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Bacterial plasma membranes, mainly composed of phospholipids and proteins, separate the interior of a cell from their environment and maintain cell homeostasis. Early notions of membrane organization gave rise to a model in which a homogeneous lipid bilayer permits free protein diffusion within the membrane. However, proteins and phospholipids are distributed unevenly in bacterial membranes, and specific membrane localization is often crucial for protein activity or function. Bacterial membrane domains with different lipid compositions and with differential physical properties in comparison with the surrounding membrane have now been described. These membrane domains appear to influence localization, diffusion, and function of membrane proteins, and thereby seem to be involved in many cellular processes. Here, we describe the different types of bacterial membrane domains and discuss their involvement in various bacterial cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams DW, LJ W, Errington J (2015) Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J 34:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aj De Boer P (2010) Advances in understanding E. coli cell fission. Curr Opin Microbiol 13:730–737

    Article  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  CAS  PubMed  Google Scholar 

  • An D, Na C, Bielawski J, Hannun YA, Kasper DL (2011) Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci U S A 108:4666–4671

    Article  CAS  PubMed  Google Scholar 

  • Andrade DM, Clausen MP, Keller J, Mueller V, Wu C, Bear JE, Hell SW, Christoffer Lagerholm B, Eggeling C (2015) Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane – a minimally invasive investigation by STED-FCS. Sci Rep 5:11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 1817:1937–1949

    Article  CAS  PubMed  Google Scholar 

  • Bach JN, Bramkamp M (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Barák I, Muchová K (2013) The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065

    Article  PubMed  PubMed Central  Google Scholar 

  • Barák I, Muchová K, Wilkinson AJ, O’Toole PJ, Pavlendová N (2008) Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernal P, Muñoz-Rojas J, Hurtado A, Ramos JL, Segura A (2007) A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol 9:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M, Veenhuis M, Westermann M, Müller JP, Bron S, Kok J, Kuipers OP, Jongbloed JDH (2004) Subcellular sites for bacterial protein export. Mol Microbiol 53:1583–1599

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-T, Megha LE (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284:6079–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajkovic A, Lan G, Sun SX, Wirtz D, Lutkenhaus J (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244

    Article  CAS  PubMed  Google Scholar 

  • Donovan C, Bramkamp M (2009) Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799

    Article  CAS  PubMed  Google Scholar 

  • Errington J (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13:241–248

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Hu Y, Zheng Y, Zhu W, Li K, Huang C-H, Ko T-P, Ren F, Chan H-C, Nega M, Bogue S, López D, Kolter R, Götz F, Guo R-T, Oldfield E (2014) Structural and functional analysis of Bacillus subtilis YisP reveals a role of its product in biofilm production. Chem Biol 21:1557–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishov I, Woldringh CL (1999) Visualization of membrane domains in Escherichia coli. Mol Microbiol 32:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60

    Article  CAS  PubMed  Google Scholar 

  • Gold VAM, Robson A, Bao H, Romantsov T, Duong F, Collinson I (2010) The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci U S A 107:10044–10049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán-Flores JE, Alvarez AF, Poggio S, Gavilanes-Ruiz M, Georgellis D (2017) Isolation of detergent-resistant membranes (DRMs) from Escherichia coli. Anal Biochem 518:1–8

    Article  PubMed  Google Scholar 

  • Hinderhofer M, Walker CA, Friemel A, Stuermer CA, Möller HM, Reuter A (2009) Evolution of prokaryotic SPFH proteins. BMC Evol Biol 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang KC, Ramamurthi KS (2010) Macromolecules that prefer their membranes curvy. Mol Microbiol 76:822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutton ML, D’Costa K, Rossiter AE, Wang L, Turner L, Steer DL, Masters SL, Croker BA, Kaparakis-Liaskos M, Ferrero RL (2017) A Helicobacter pylori homolog of eukaryotic flotillin is involved in cholesterol accumulation, epithelial cell responses and host colonization. Front Cell Infect Microbiol 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones LJF, Carballido-Ló Pez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  CAS  PubMed  Google Scholar 

  • Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 186:1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppelman CM, Den Blaauwen T, Duursma MC, Heeren RM, Nanninga N (2001) Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 183:6144–6147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusaka J, Shuto S, Imai Y, Ishikawa K, Saito T, Natori K, Matsuoka S, Hara H, Matsumoto K (2016) Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res Microbiol 167:202–214

    Article  CAS  PubMed  Google Scholar 

  • Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  PubMed  Google Scholar 

  • Langhorst MF, Reuter A, Stuermer CAO (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240

    Article  CAS  PubMed  Google Scholar 

  • Langhorst MF, Solis GP, Hannbeck S, Plattner H, Stuermer CAO (2007) Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett 581:4697–4703

    Article  CAS  PubMed  Google Scholar 

  • LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenarcic R, Halbedel S, Visser L, Shaw M, LJ W, Errington J, Marenduzzo D, Hamoen LW (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu F, Taghbalout A (2013) Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J Biol Chem 288:7241–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring cytoskeletal: protein filaments that provide for intracellular organization. Annu Rev Biochem 76:539–562

    Article  CAS  PubMed  Google Scholar 

  • Maloney E, Lun S, Stankowska D, Guo H, Rajagoapalan M, Bishai WR, Madiraju MV (2011) Alterations in phospholipid catabolism in Mycobacterium tuberculosis lysX mutant. Front Microbiol 2:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A 96:14706–14711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt H, de Boer PA (2001) Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci U S A 98:14202–14207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskaya E, Ryan AC, Mo X, Lin C-C, Khalaf KI, Dowhan W, Garrett TA (2009) Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 284:2990–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2014) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgel JP (2006) Surface-active helices in transmembrane proteins. Curr Protein Pept Sci 7:553–560

    Article  CAS  PubMed  Google Scholar 

  • Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM (2016) MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys J 110:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  CAS  PubMed  Google Scholar 

  • Raetz CR, Dowhan W (1990) Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 265:1235–1238

    CAS  PubMed  Google Scholar 

  • Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108:6264–6269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM (2007) Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 64:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Romantsov T, Guan Z, Wood JM (2009) Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta 1788:2092–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JE, Kennedy EP (1977) Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J Mol Biol 110:603–618

    Article  CAS  PubMed  Google Scholar 

  • Salje J, Van Den Ent F, De Boer P, Lö We J (2011) Direct membrane binding by bacterial actin MreB. Mol Cell 43:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffers D-J, Tol MB (2015) LipidII: just another brick in the wall? PLoS Pathog 11:e1005213

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider J, Mielich-Süss B, Böhme R, Lopez D (2015) In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. Microbiology 161:1871–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Lutkenhaus J (2009) The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC/MinD. Mol Microbiol 72:410–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih Y-L, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A 100:7865–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih Y-L, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58:917–928

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  CAS  PubMed  Google Scholar 

  • Somani VK, Aggarwal S, Singh D, Prasad T, Bhatnagar R (2016) Identification of novel raft marker protein, FlotP in Bacillus anthracis. Front Microbiol 7:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Strahl H, Errington J (2017) Bacterial membranes: structure, domains, and function. Annu Rev Microbiol 71:519–538

    Article  CAS  PubMed  Google Scholar 

  • Strahl H, Bürmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 5:3442

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramani S, Perdreau-Dahl H, Morth JP (2016) The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. elife 5:e11407

    Article  PubMed  PubMed Central  Google Scholar 

  • Szeto TH, Rowland SL, Rothfield LI, King GF (2002) Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc Natl Acad Sci U S A 99:15693–15698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  • van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 108:15822–15827

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanounou S, Pines D, Pines E, Parola AH, Fishov I (2002) Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 76:1–11

    Article  CAS  PubMed  Google Scholar 

  • Vats P, Yu J, Rothfield L (2009) The dynamic nature of the bacterial cytoskeleton. Cell Mol Life Sci 66:3353–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viola A, Gupta N (2007) Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol 7:889–896

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is funded by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT, 178033), and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN209215 and IA203216). We thank Claudia Rodriguez for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Georgellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvarez, A.F., Georgellis, D. (2018). Bacterial Lipid Domains and Their Role in Cell Processes. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics