Skip to main content

Membrane Lipid Biogenesis

  • Living reference work entry
  • First Online:
  • 295 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

In order to maintain a fluid lipid bilayer in the cell membrane, microorganisms must adjust to environmental conditions including the ambient temperature, pressure, and the presence of solutes that affect the physical state of the membrane. Although the types of amphipathic lipids present in the cell membrane can vary widely between species, the variety of adjustments made, including changes in the compositions of the hydrocarbon chains and the polar headgroups, appear to obey certain rules. The regulation of lipid biosynthesis to adapt to the cellular environment will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Diradyl refers to chains that may be linked through acyl ester bonds, alk-1-enyl ether, or saturated ether bonds.

  2. 2.

    Abbreviations: DGDG, diglycosyldiacylglycerol; DGluDG, diglycosyldiacylglycerol; GAPlaE, glycerol acetal of the plasmalogen form of phosphatidylethanolamine; MGDG, monoglycosyldiacylglycerol; MGluDG, monoglucosyldiacylglycerol; MV, membrane vesicles; PE, phosphatidylethanolamine; PlaE, plasmalogen form of phosphatidylethanolamine; PG, phosphatidylglycerol

References

  • Ailhaud GP, Vagelos PR (1966) Palmitoyl-acyl carrier protein as acyl donor for complex lipid biosynthesis in Escherichia coli. J Biol Chem 241:3866–3868

    CAS  PubMed  Google Scholar 

  • Alley SH, Ces O, Templer RH, Barahona M (2008) Biophysical regulation of lipid biosynthesis in the plasma membrane. Biophys J 94:2938–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cronan JE Jr, Gelmann EP (1975) Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev 39:232–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullis PR, De Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831:471–494

    Article  CAS  PubMed  Google Scholar 

  • Edman M, Berg S, Storm P, Wikstrom M, Vikstrom S, Ohman A et al (2003) Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 278:8420–8428

    Article  CAS  PubMed  Google Scholar 

  • Geiger O, Lopez-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513

    Article  CAS  PubMed  Google Scholar 

  • Goldfine H (1982) Lipids of procaryotes-structure and distribution. Curr Top Membr Transport 17:1–43

    Article  CAS  Google Scholar 

  • Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25:1501–1507

    CAS  PubMed  Google Scholar 

  • Goldfine H, Ailhaud GP (1971) Fatty acyl-acyl carrier protein and fatty acyl-CoA in the biosynthesis of phosphatidic acid in Clostridium butyricum. Biochem Biophys Res Commun 45:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Goldfine H, Bloch K (1961) On the origin of unsaturated fatty acids in clostridia. J Biol Chem 236:2596–2601

    CAS  PubMed  Google Scholar 

  • Goldfine H, Johnston NC (2005) Membrane lipids of clostridia. In: Dürre P (ed) Handbook on clostridia. Taylor & Francis, Boca Raton, pp 297–310

    Chapter  Google Scholar 

  • Goldfine H, Ailhaud GP, Vagelos PR (1967) Involvement of acyl carrier protein in acylation of glycerol 3-phosphate in Clostridium butyricum. II Evidence for the participation of acyl thioesters of acyl carrier protein. J Biol Chem 242:4466–4475

    CAS  PubMed  Google Scholar 

  • Goldfine H, Johnston NC, Mattai J, Shipley GG (1987) The regulation of bilayer stability in Clostridium butyricum: studies on the polymorphic phase behavior of the ether lipids. Biochemistry 26:2814–2822

    Article  CAS  PubMed  Google Scholar 

  • Green PR, Merrill AH Jr, Bell RM (1981) Membrane phospholipid synthesis in Escherichia coli. Purification, reconstitution, and characterization of sn-glycerol-3-phosphate acyltransferase. J Biol Chem 256:11151–11159

    CAS  PubMed  Google Scholar 

  • Gruner SM, Shyamsunder E (1991) Is the mechanism of general anesthesia related to lipid membrane spontaneous curvature? Ann N Y Acad Sci 625:685–697

    Article  CAS  PubMed  Google Scholar 

  • Halverson LJ, Firestone MK (2000) Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl Environ Microbiol 66:2414–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtwick R, Meinhardt F, Keweloh H (1997) cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8. Appl Environ Microbiol 63:4292–4297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang KC, Ramamurthi KS (2010) Macromolecules that prefer their membranes curvy. Mol Microbiol 76:822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high-concentrations of toluene. Nature (London) 338:264–266

    Article  CAS  Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Article  CAS  PubMed  Google Scholar 

  • Janes N (1996) Curvature stress and polymorphism in membranes. Chem Phys Lipids 81:133–150

    Article  CAS  Google Scholar 

  • Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 86:1475–1483

    Article  Google Scholar 

  • Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125

    Article  CAS  PubMed  Google Scholar 

  • Lepage C, Fayolle F, Hermann M, Vandecasteele J-P (1987) Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133:103–110

    CAS  Google Scholar 

  • Lin TY, Weibel DB (2016) Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 100:4255–4267

    Article  CAS  PubMed  Google Scholar 

  • Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids -possible biological relevance. Biochim Biophys Acta 988:221–256

    Article  CAS  Google Scholar 

  • Linde K, Grobner G, Rilfors L (2004) Lipid dependence and activity control of phosphatidylserine synthase from Escherichia coli. FEBS Lett 575:77–80

    Article  CAS  PubMed  Google Scholar 

  • Lueking DR, Goldfine H (1975) sn-Glycerol-3-phosphate acyltransferase activity in particulate preparations from anaerobic, light-grown cell of Rhodopseudomonas sphaeroides. The involvement of acyl thioester derivatives of acyl carrier protein in complex lipid synthesis. J Biol Chem 250:530–8535

    Google Scholar 

  • MacDonald DL, Goldfine H (1991) Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricum under conditions of controlled lipid chain composition. Appl Environ Microbiol 57:3517–3521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K (2005) Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 187:2163–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2016) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398

    Article  Google Scholar 

  • Rietveld AG, Killian JA, Dowhan W, De Kruijff B (1993) Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem 268:12427–12433

    CAS  PubMed  Google Scholar 

  • Rilfors L, Lindblom G (2002) Regulation of lipid composition in biological membranes – biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf B Biointerfaces 26:112–124

    Article  CAS  Google Scholar 

  • Rilfors L, Niemi A, Haraldsson S, Edwards K, Andersson AS, Dowhan W (1999) Reconstituted phosphatidylserine synthase from Escherichia coli is activated by anionic phospholipids and micelle-forming amphiphiles. Biochim Biophys Acta 1438:281–294

    Article  CAS  PubMed  Google Scholar 

  • Scheuerbrandt G, Goldfine H, Baronowsky P, Bloch K (1961) A novel mechanism for the biosynthesis of unsaturated fatty acids. J Biol Chem 236:PC70–PC71

    CAS  PubMed  Google Scholar 

  • Singh AK, Zhang YM, Zhu K, Subramanian C, Li Z, Jayaswal RK et al (2009) FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 301:188–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan BK, Bogdanov M, Zhao JS, Dowhan W, Raetz CRH, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 109:16504–16509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Guan Z, Goldfine H (2013) An ethanolamine-phosphate modified glycolipid in Clostridium acetobutylicum that responds to membrane stress. Biochim Biophys Acta 1831:1185–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikstrom S, Li L, Karlsson OP, Wieslander A (1999) Key role of the diglucosyldiacylglycerol synthase for the nonbilayer-bilayer lipid balance of Acholeplasma laidlawii membranes. Biochemistry 38:5511–5520

    Article  CAS  PubMed  Google Scholar 

  • Vollherbst-Schneck K, Sands JA, Montenecourt BS (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47:193–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walton PA, Goldfine H (1987) Transphosphatidylation activity in Clostridium butyricum Evidence for a secondary pathway by which membrane phospholipids may be synthesized and modified. J Biol Chem 262:10355–10361

    CAS  PubMed  Google Scholar 

  • Weber FJ, De Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

  • Weber FJ, Isken S, deBont JAM (1994) Cis/trans isomerization of fatty-acids as a defense-mechanism of Pseudomonas-Putida strains to toxic concentrations of toluene. Microbiology-UK 140:2013–2017

    Article  CAS  Google Scholar 

  • Wieslander Å, Christiansson A, Rilfors L, Lindblom G (1980) Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry 19:3650–3655

    Article  CAS  PubMed  Google Scholar 

  • Wieslander Å, Christiansson A, Rilfors L, Khan A, Johansson LBÅ, Lindblom G (1981a) Lipid phase structure governs the regulation of lipid composition in membranes of Acholeplasma laidlawii. FEBS Lett 124:273–278

    Article  CAS  Google Scholar 

  • Wieslander Å, Rilfors L, Johansson LBÅ, Lindblom G (1981b) Reversed cubic phase with membrane glucolipids from Acholeplasma laidlawii. 1H, 2H, and diffusion nuclear magnetic resonance measurements. Biochemistry 20:730–735

    Article  CAS  PubMed  Google Scholar 

  • Wieslander Å, Rilfors L, Lindblom G (1986) Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols, and detergents: arguments for effects on lipid packing. Biochemistry 25:7511–7517

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  Google Scholar 

  • Zhu K, Bayles DO, Xiong AM, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology-SGM 151:615–623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Goldfine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Goldfine, H. (2016). Membrane Lipid Biogenesis. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics