Skip to main content

Bacterial Sphingolipids and Sulfonolipids

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

The bacterial envelope is often composed by two membranes: the inner or cytoplasmic membrane and an outer membrane. The inner membrane consists of a lipid bilayer with phospholipids covering the inner and the outer leaflet. Although the outer membrane displays a bilayer structure as well, only the inner leaflet of the outer membrane is composed of phospholipids, whereas the outer leaflet is typically formed by lipid A-containing lipopolysaccharides in Gram-negative bacteria. However, some bacteria lack lipopolysaccharides and have sphingolipids in the outer leaflet of their outer membrane instead. Sphingolipids are considered to be typical eukaryotic membrane lipids, essential components of the plasma membrane, and are crucial for signaling and organization of lipid rafts in eukaryotes.

Although there is a considerable structural diversity within bacterial sphingolipids, very little is known about their biosynthesis, transport to the outer leaflet of the outer membrane, or their evolutionary history. Whereas bacterial sphingolipids seem to be important as an outermost protective layer in some bacteria, for the survival of symbiotic Bacteroides in humans, as virulence factors in some pathogenic bacteria, and maybe in fruiting body formation in myxobacteria, their biological functions are poorly understood on a molecular level.

Sulfonolipids are structural analogues of sphingolipids and seem to be important for gliding motility in Cytophaga species, but also as crucial bacterial factors that trigger multicellularity in choanoflagellates, the closest living relatives of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbanat DR, Leadbetter ER, Godchaux W III, Escher A (1986) Sulphonolipids are molecular determinants of gliding motility. Nature 324:367–369

    Article  CAS  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Alegado RA, Brown LA, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLIFE 1:e00013

    Article  PubMed  PubMed Central  Google Scholar 

  • An D, Na C, Bielawski J, Hannun YA, Kasper DL (2011) Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci U S A 108:4666–4671

    Article  CAS  PubMed  Google Scholar 

  • An D, Sungwhan F, Olszak T, Neves JF, Avci FY, Ertuk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt T, Wolff H, Bode HB (2015) Neutral and phospholipids of the Myxococcus xanthus lipidome during fruiting body formation and germination. Appl Environ Microbiol 81:6538–6547

    Article  Google Scholar 

  • Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert WD, Heinz DW (2005) Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 24:3166–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christen B, Abeliuk E, Collier JM, Kalogerati VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L (2011) The essential genome of a bacterium. Mol Syst Biol 7:528

    Article  PubMed  PubMed Central  Google Scholar 

  • Cochet F, Peri F (2017) The role of carbohydrates in the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) signalling. Int J Mol Sci 18:2318

    Article  PubMed Central  Google Scholar 

  • Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowart LA, Obeid LM (2006) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer H, Ellström P, Ekström K, Gustafsson M, Svanborg C (2007) Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 9:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60

    Article  CAS  PubMed  Google Scholar 

  • Godchaux IIIW, Leadbetter ER (1984) Sulfonolipids of gliding bacteria: structure of the N-acylaminosulfonates. J Biol Chem 259:2982–2990

    CAS  PubMed  Google Scholar 

  • Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30

    Article  CAS  PubMed  Google Scholar 

  • Heaver SL, Johnson EL, Ley RE (2018) Sphingolipids in host-microbial interactions. Curr Opin Microbiol 43:92–99

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Furuya S (2008) Roles of L-serine and sphingolipid synthesis in brain development and neuronal survival. Prog Lipid Res 47:188–203

    Article  CAS  PubMed  Google Scholar 

  • Ikushiro H, Hayashi H, Kagamiyama H (2001) A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction. J Biol Chem 276:18249–18256

    Article  CAS  PubMed  Google Scholar 

  • Ikushiro H, Islam MM, Tojo H, Hayashi H (2007) Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii. J Bacteriol 198:5749–5761

    Article  Google Scholar 

  • Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL (2007) Detection and identification of Bacteriovorax stolpii UKi2 sphingophosphonolipid molecular species. J Am Soc Mass Spectrom 18:394–403

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Kim HJ, Lee SJ (2015) Complete genome sequence of Escherichia coli BL21. Genome Announc 3:e00134–e00115

    PubMed  PubMed Central  Google Scholar 

  • Kanzaki H, Movila A, Kayal R, Napimoga MH, Egashira K et al (2017) Phosphoglycerol dihydroceramide, a distinctive ceramide produced by Porphyromonas gingivalis, promotes RANKL-induced osteoclastogenesis by acting on non-muscle myosinII-A (Myh9), an osteoclast cell fusion regulatory factor. Biochim Biophys Acta 1862:452–462

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K (1995) Sphingolipid composition in Bacteroides species. Anaerobe 1:135–139

    Article  CAS  PubMed  Google Scholar 

  • Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zähringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Kawahara K, Kubota M, Sato N, Tsuge K, Seto Y (2002) Occurrence of an α-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol Lett 214:289–294

    CAS  PubMed  Google Scholar 

  • Kawazaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176:284–290

    Article  Google Scholar 

  • Keck M, Gisch N, Moll H, Vorhölter FJ, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Holst O (2011) Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum so ce56. J Biol Chem 286:12850–12859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerbarh O, Campopiano DJ, Baxter RL (2006) Mechanism of α-oxoamine synthases: identification of the intermediate Claisen product in the 8-amino-7-oxononanoate synthase reaction. Chem Commun 60–62

    Google Scholar 

  • Kihara A, Mitsutake S, Mizutani Y, Igarashi Y (2007) Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46:126–144

    Article  CAS  PubMed  Google Scholar 

  • Kinjo Y, Pei B, Bufali S, Raju R, Richardson SK, Imamura M, Fujio M, Wu D, Khurana A, Kawahara K, Wong CH, Howell AR, Seeberger PH, Kronenberg M (2008) Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem Biol 15:654–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzen W, Bozküyü KAJ, Cortina NS, Bode HB (2014) A comprehensive insight into the lipid composition of Myxococcus xanthus by UPLC-ESI-MS. J Lipid Res 55:2620–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mina JG, Thye JK, Alqaisi AQI, Bird LE, Dods RH et al (2017) Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites. J Biol Chem 292:12208–12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moye ZD, Valiuskyte K, Dewhirst FE, Nichols FC, Davey ME (2016) Synthesis of sphingolipids impacts survival of Porphyromonas gingivalis and the presentation of surface polysaccharides. Front Microbiol 7:1919

    Article  PubMed  PubMed Central  Google Scholar 

  • Naka T, Fujiwara N, Yano I, Maeda S, Doe M, Minamino M, Ikeda N, Kato Y, Watabe K, Kumazawa Y, Tomiyasu I, Kobayashi K (2003) Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim Biophys Acta 1635:83–92

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2017) Lehninger – principles of biochemistry, 7th edn. WH Freeman and Company, New York

    Google Scholar 

  • Nichols FC, Yao X, Bajrami B, Downes J, Finagold SM, Knee E, Gallagher JJ, Housley WJ, Clark RB (2011) Phosphorylated dihydroceramides from common human bacteria are recovered in human tissues. PLoS One 6:e16771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto FL, Pescio LG, Favale NO, Adamo AM, Sterin-Speziale NB (2008) Sphingolipid metabolism is a crucial determinant of cellular fate in non-stimulated proliferating Madin-Darby canine kidney (MDCK) cells. J Biol Chem 283:25682–25691

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Tachimoto H, Kaga T (2010) Elevation of ceramide in Acetobacter malorum S24 by low pH stress and high temperature stress. J Biosci Bioeng 109:32–36

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Jantzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7:103–112

    Article  CAS  Google Scholar 

  • Pitta TP, Leadbetter ER, Godchaux W III (1989) Increase of ornithine amino lipid content in a sulfonolipid-deficient mutant of Cytophaga johnsonae. J Bacteriol 171:952–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raetz CRH, Dowhan W (1990) Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 265:1235–1238

    CAS  PubMed  Google Scholar 

  • Raman MCC, Johnson KA, Clarke DJ, Naismith JH, Campopiano DJ (2010) The serine palmitoyltransferase from Sphingomonas wittichii RW1: an interesting link to an unusual acyl carrier protein. Biopolymers 93:811–822

    Article  CAS  PubMed  Google Scholar 

  • Ring MW, Schwär G, Bode HB (2009) Biosynthesis of 2-hydroxy and iso-even fatty acids is connected to sphingolipid formation in myxobacteria. Chembiochem 10:2003–2010

    Article  CAS  PubMed  Google Scholar 

  • Roggo C, Coronado E, Moreno-Forero SK, Harshman K, Weber J, van der Meer JR (2013) Genome-wide transposon insertion scanning of environmental survival functions in the polycyclic aromatic hydrocarbon degrading bacterium Sphingomonas wittichii RW1. Environ Microbiol 13:2681–2695

    Google Scholar 

  • Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177

    Article  CAS  PubMed  Google Scholar 

  • Webster SP, Alexeev D, Campopiano DJ, Watt RM, Alexeeva M, Sawyer L, Baxter RL (2000) Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry 39:516–528

    Article  CAS  PubMed  Google Scholar 

  • Weintraub A, Zähringer U, Wollenweber HW, Seydel U, Rietschel ET (1989) Structural characterization of the lipid a component of Bacteroides fragilis strain NCTC9343 lipopolysaccharide. Eur J Biochem 183:425–431

    Article  CAS  PubMed  Google Scholar 

  • White RH (1984) Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 159:42–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128

    Article  CAS  PubMed  Google Scholar 

  • Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA (2013) Production of α-galactosyl ceramide by a prominent member of the human gut microbiota. PLoS Biol 11(7):e1001610

    Article  PubMed  PubMed Central  Google Scholar 

  • Woznica A, Cantley AM, Beemelmanns C, Freinkman E, Clardy J, King J (2016) Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc Natl Acad Sci U S A 113:7894–7899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103:3972–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano I, Tomiyasu I, Yabuuchi E (1982) Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol Lett 15:303–307

    Article  CAS  Google Scholar 

  • Yano I, Imaizumi S, Tomiyasu I, Yabuuchi E (1983) Separation and analysis of free ceramides containing 2-hydroxy fatty acids in Sphingobacterium species. FEMS Microbiol Lett 20:449–453

    Article  CAS  Google Scholar 

  • Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M, Liu H, McMahon SA, Oke M, Puech D, Barton GJ, Naismith JH, Campopiano DJ (2007) The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol 370:870–886

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178,359 and 253,549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia) and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México

(DGAPA-UNAM; PAPIIT IN202616, IN203612). We thank Lourdes Martínez-Aguilar for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geiger, O., Padilla-Gómez, J., López-Lara, I.M. (2018). Bacterial Sphingolipids and Sulfonolipids. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics