Skip to main content

Adaptive Resolution Molecular Dynamics Technique

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Soft matter systems display properties that span different time and length scales. In addition, scales’ interplay is often the key to understand fundamental mechanisms to the aim of controlling and/or designing materials with properties on demand. On the other hand, computational soft matter is limited by computational power for both, size and time of simulation and analysis of large sets of data. In this perspective, computational efficiency to treat large systems on long time scales becomes one of the main goals in constructing modern algorithms, together with the capability of designing theoretical schemes for data analysis capable of extracting the relevant information of interest above all the effects of scales’ interplay. One common and recurrent feature, in such studies, is the need to include relevant chemical details in a specific region where an event of interest is taking place, while the environment plays simply the role of a macroscopic thermodynamic bath that can be treatable at a coarse-grained level. Thus, an efficient computational strategy consists in employing multiple resolution methods, which simultaneously consider models with different resolution in different regions. This chapter provides a basic introduction to the adaptive resolution simulation (AdResS) method and its recent extensions. This methodology is designed with the idea of efficient computation and analysis of multiple scales as envisaged above. We will report its basic principles and technical aspects for the various directions along which the original idea was developed. As it will emerge in the next sections, the basic idea of adaptive resolution, already highly efficient in its first implementation, has now reached a high level of theoretical solidity, being framed in different but complementary ways in physically rigorous principles. Finally, selected applications, relevant in the field of materials science, chemical physics, and biochemistry, are illustrated in order to show the advanced possibilities of application of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, Lindahl E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  ADS  Google Scholar 

  • Agarwal A, Delle Site L (2015) Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: simulation of liquid water. J Chem Phys 143:094102

    Article  ADS  Google Scholar 

  • Agarwal A, Delle Site L (2016) Grand-canonical adaptive resolution centroid molecular dynamics: implementation and application. Comp Phys Commun 206:26

    Article  ADS  MathSciNet  Google Scholar 

  • Agarwal A, Wang H, SchĂĽtte C, Delle Site L (2014) Chemical potential of liquids and mixtures via adaptive resolution simulation. J Chem Phys 141:034102

    Article  ADS  Google Scholar 

  • Agarwal A, Zhu J, Hartmann C, Wang H, Delle Site L (2015) Molecular dynamics in a grand ensemble: Bergmann-Lebowitz model and adaptive resolution simulation. New J Phys 17:083042

    Article  Google Scholar 

  • Agarwal A, Clementi C, Delle Site L (2017) Path integral-GC-AdResS simulation of a large hydrophobic solute in water: a tool to investigate the interplay between local microscopic structures and quantum delocalization of atoms in space. Phys Chem Chem Phys 19:13030–13037

    Article  Google Scholar 

  • Bergmann PG, Lebowitz JL (1955) New approach to nonequilibrium processes. Phys Rev 99:578

    Article  ADS  MathSciNet  Google Scholar 

  • Boereboom JM, Potestio R, Donadio D, Bulo RE (2016) Toward hamiltonian adaptive QM/MM: accurate solvent structures using many-body potentials. J Chem Theory Comput 12:3441–3448

    Article  Google Scholar 

  • De Fabritiis G, Delgado-Buscalioni R, Coveney PV (2004) Energy controlled insertion of polar molecules in dense fluids. J Chem Phys 121:12139

    Article  ADS  Google Scholar 

  • Delgado-Buscalioni R (2012) Tools for multiscale simulation of liquids using open molecular dynamics. Numerical analysis of multiscale computations. Springer, Berlin/Heidelberg, pp 145–166

    MATH  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) Usher: an algorithm for particle insertion in dense fluids. J Chem Phys 119:978–987

    Article  ADS  Google Scholar 

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128:114110

    Article  ADS  Google Scholar 

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2009) Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. J Chem Phys 131:244107

    Article  ADS  Google Scholar 

  • Delgado-Buscalioni R, Sablić J, Praprotnik M (2015) Open boundary molecular dynamics. Eur Phys J Spec Top 224:2331–2349

    Article  Google Scholar 

  • Delle Site L (2007) Some fundamental problems for an energy-conserving adaptive resolution molecular dynamics scheme. Phys Rev E 76:047701

    Article  ADS  Google Scholar 

  • Delle Site L (2018) Grand canonical adaptive resolution simulation for molecules with electrons: a theoretical framework based on physical consistency. Comp Phys Commun 222:94–101

    Article  ADS  Google Scholar 

  • Delle Site L, Praprotnik M (2017) Molecular systems with open boundaries: theory and simulation. Phys Rep 693:1–56

    Article  ADS  MathSciNet  Google Scholar 

  • Ensing B, Nielsen SO, Moore PB, Klein ML, Parrinello M (2007) Energy conservation in adaptive hybrid atomistic/coarse-grain molecular dynamics. J Chem Theory Comput 3:1100

    Article  Google Scholar 

  • Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191

    Article  ADS  Google Scholar 

  • Español P, Delgado-Buscalioni R, Everaers R, Potestio R, Donadio D, Kremer K (2015) Statistical mechanics of hamiltonian adaptive resolution simulations. J Chem Phys 142:064115

    Article  ADS  Google Scholar 

  • Fiorentini R, Kremer K, Potestio R, Fogarty AC (2017) Using force-based adaptive resolution simulations to calculate solvation free energies of amino acid sidechain analogues. J Chem Phys 146:244113

    Article  ADS  Google Scholar 

  • Flekkoy EG, Delgado-Buscalioni R, Coveney PV (2005) Flux boundary conditions in particle simulations. Phys Rev E 72:026703

    Article  ADS  Google Scholar 

  • Fogarty AC, Potestio R, Kremer K (2015) Adaptive resolution simulation of a biomolecule and its hydration shell: structural and dynamical properties. J Chem Phys 142:195101

    Article  ADS  Google Scholar 

  • Fogarty AC, Potestio R, Kremer K (2016) A multi-resolution model to capture both global fluctuations of an enzyme and molecular recognition in the ligand-binding site. Proteins 84:1902–1913

    Article  Google Scholar 

  • Fritsch S, Junghans C, Kremer K (2012a) Structure formation of toluene around c60: implementation of the adaptive resolution scheme (adress) into gromacs. J Chem Theory Comput 8:398–403

    Article  Google Scholar 

  • Fritsch S, Poblete S, Junghans C, Ciccotti G, Delle Site L, Kremer K (2012b) Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir. Phys Rev Lett 108:170602

    Article  ADS  Google Scholar 

  • Guzman HV, Junghans C, Kremer K, Stuehn T (2017) Scalable and fast heterogeneous molecular simulation with predictive parallelization schemes. Phys Rev E 96:053311

    Article  ADS  Google Scholar 

  • Halverson JD, Brandes T, Lenz O, Arnold A, Bevc S, Starchenko V, Kremer K, Stuehn T, Reith D (2013) Espresso++: a modern multiscale simulation package for soft matter systems. Comput Phys Commun 184:1129–1149

    Article  ADS  Google Scholar 

  • Heidari M, Cortes-Huerto R, Donadio D, Potestio R (2016) Accurate and general treatment of electrostatic interaction in hamiltonian adaptive resolution simulations. Eur Phys J Spec Top 225:1505–1526

    Article  Google Scholar 

  • Heyden A, Lin H, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B 111:2231–2241

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  ADS  Google Scholar 

  • Huang K (1987) Statistical mechanics. Wiley, New York

    MATH  Google Scholar 

  • Jabes BS, Krekeler C, Klein R, Delle Site L (2018) Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique. J Chem Phys 148:193804

    Article  ADS  Google Scholar 

  • Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300

    Article  ADS  Google Scholar 

  • Kreis K, Potestio R (2016) The relative entropy is fundamental to adaptive resolution simulations. J Chem Phys 145:044104

    Article  ADS  Google Scholar 

  • Kreis K, Donadio D, Kremer K, Potestio R (2014) A unified framework for force-based and energy-based adaptive resolution simulations. EPL 108(3):30007

    Article  Google Scholar 

  • Kreis K, Fogarty AC, Kremer K, Potestio R (2015) Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations. Eur Phys J Spec Top 224:2289–2304

    Article  Google Scholar 

  • Kreis K, Potestio R, Kremer K, Fogarty AC (2016a) Adaptive resolution simulations with self-adjusting high-resolution regions. J Chem Theory Comput 12:4067–4081

    Article  Google Scholar 

  • Kreis K, Tuckerman ME, Donadio D, Kremer K, Potestio R (2016b) From classical to quantum and back: a hamiltonian scheme for adaptive multiresolution classical/path-integral simulations. J Chem Theory Comput 12:3030–3039

    Article  Google Scholar 

  • Kreis K, Kremer K, Potestio R, Tuckerman ME (2017) From classical to quantum and back: hamiltonian adaptive resolution path integral, ring polymer, and centroid molecular dynamics. J Chem Phys 147:244104

    Article  ADS  Google Scholar 

  • Krekeler C, Delle Site L (2017) Towards open boundary molecular dynamics simulation of ionic liquids. Phys Chem Chem Phys 19:4701–4709

    Article  Google Scholar 

  • Lebowitz JL, Bergmann PG (1957) Irreversible Gibbsian ensembles. Ann Phys 1:1

    Article  ADS  MathSciNet  Google Scholar 

  • Marrink SJ, Tieleman DP (2013) Perspective on the MARTINI model. Chem Soc Rev 42:6801–6822

    Article  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  Google Scholar 

  • Mones L, Jones A, Götz AW, Laino T, Walker RC, Leimkuhler B, Csany G, Bernstein N (2015) The adaptive buffered force QM/MM method in the cp2k and amber software packages. J Comp Chem 36:633

    Article  Google Scholar 

  • Nagarajan A, Junghans C, Matysiak S (2013) Multiscale simulation of liquid water using a four-to-one mapping for coarse-graining. J Chem Theory Comput 9:5168–5175

    Article  Google Scholar 

  • Netz PA, Potestio R, Kremer K (2016) Adaptive resolution simulation of oligonucleotides. J Chem Phys 145:234101

    Article  ADS  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1

    Article  ADS  Google Scholar 

  • Poblete S, Praprotnik M, Kremer K, Delle Site L (2010) Coupling different levels of esolution in molecular simulations. J Chem Phys 132:114101

    Article  ADS  Google Scholar 

  • Poma A, Delle Site L (2010) Classical to path-integral adaptive resolution in molecular simulation: towards a smooth quantum-classical coupling. Phys Rev Lett 104:250201

    Article  ADS  Google Scholar 

  • Poma AB, Delle Site L (2011) Adaptive resolution simulation of liquid parahydrogen: testing the robustness of the quantum-classical adaptive coupling. Phys Chem Chem Phys 13:10510

    Article  Google Scholar 

  • Potestio R, Delle Site L (2012) Quantum locality and equilibrium properties in low-temperature parahydrogen: a multiscale simulation study. J Chem Phys 136:054101

    Article  ADS  Google Scholar 

  • Potestio R, Español P, Delgado-Buscalioni R, Everaers R, Kremer K, Donadio D (2013a) Monte carlo adaptive resolution simulation of multicomponent molecular liquids. Phys Rev Lett 111:060601

    Article  ADS  Google Scholar 

  • Potestio R, Fritsch S, Español P, Delgado-Buscalioni R, Kremer K, Everaers R, Donadio D (2013b) Hamiltonian adaptive resolution simulation for molecular liquids. Phys Rev Lett 110:108301

    Article  ADS  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular- dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123:224106

    Article  ADS  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2006) Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. Phys Rev E 73:066701

    Article  ADS  Google Scholar 

  • Praprotnik M, Matysiak S, Delle Site L, Kremer K, Clementi C (2007a) Adaptive resolution simulation of liquid water. J Phys Condens Matter 19:292201

    Article  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2007b) A macromolecule in a solvent: adaptive resolution molecular dynamics simulation. J Chem Phys 126:134902

    Article  ADS  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann Rev Phys Chem 59:545–571

    Article  ADS  Google Scholar 

  • Sablić J, Praprotnik M, Delgado-Buscalioni R (2016) Open boundary molecular dynamics of sheared star-polymer melts. Soft Matter 12:2416–2439

    Article  ADS  Google Scholar 

  • Sablić J, Delgado-Buscalioni R, Praprotnik M (2017a) Application of the eckart frame to soft matter: rotation of star polymers under shear flow. Soft Matter 13:6988–7000

    Article  ADS  Google Scholar 

  • Sablić J, Praprotnik M, Delgado-Buscalioni R (2017b) Deciphering the dynamics of star molecules in shear flow. Soft Matter 13:4971–4987

    Article  ADS  Google Scholar 

  • Tarenzi T, Calandrini V, Potestio R, Giorgetti A, Carloni P (2017) Open boundary simulations of proteins and their hydration shells by hamiltonian adaptive resolution scheme. J Chem Theory Comput 13:5647–5657

    Article  Google Scholar 

  • Walther JH, Praprotnik M, Kotsalis EM, Koumoutsakos P (2012) Multiscale simulation of water flow past a C540 fullerene. J Comput Phys 231:2677–2681

    Article  ADS  Google Scholar 

  • Wang H, Hartmann C, SchĂĽtte C, Delle Site L (2013) Grand-canonical-Like molecular-dynamics simulations by using an adaptive-resolution technique. Phys Rev X 3:011018

    Google Scholar 

  • Wang H, SchĂĽtte C, Delle Site L (2012) Adaptive resolution simulation (AdResS): a smooth thermodynamic and structural transition from atomistic to coarse grained resolution and vice versa in a grand canonical fashion. J Chem Theory Comput 8:2878–2887

    Article  Google Scholar 

  • Zavadlav J, Praprotnik M (2017) Adaptive resolution simulations coupling atomistic water to dissipative particle dynamics. J Chem Phys 147:114110

    Article  ADS  Google Scholar 

  • Zavadlav J, Melo MN, Cunha AV, de Vries AH, Marrink SJ, Praprotnik M (2014a) Adaptive resolution simulation of MARTINI solvents. J Chem Theory Comput 10:2591–2598

    Article  Google Scholar 

  • Zavadlav J, Melo MN, Marrink SJ, Praprotnik M (2014b) Adaptive resolution simulation of an atomistic protein in MARTINI water. J Chem Phys 140:054114

    Article  ADS  Google Scholar 

  • Zavadlav J, Melo MN, Marrink SJ, Praprotnik M (2015a) Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. J Chem Phys 142:244118

    Article  ADS  Google Scholar 

  • Zavadlav J, Podgornik R, Praprotnik M (2015b) Adaptive resolution simulation of a DNA molecule in salt solution. J Chem Theory Comput 11:5035–5044

    Article  Google Scholar 

  • Zavadlav J, Marrink SJ, Praprotnik M (2016a) Adaptive resolution simulation of supramolecular water: the concurrent making, breaking, and remaking of water bundles. J Chem Theory Comput 12:4138–4145

    Article  Google Scholar 

  • Zavadlav J, Podgornik R, Melo MN, Marrink SJ, Praprotnik M (2016b) Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution. Eur Phys J Spec Top 225:1595–1607

    Article  Google Scholar 

  • Zavadlav J, Bevc S, Praprotnik M (2017a) Adaptive resolution simulations of biomolecular systems. Eur Biophys J 46:821–835

    Article  Google Scholar 

  • Zavadlav J, Podgornik R, Praprotnik M (2017b) Order and interactions in dna arrays: multiscale molecular dynamics simulation. Sci Rep 7:4775–4786

    Article  ADS  Google Scholar 

  • Zhu J, Klein R, Delle Site L (2016) Adaptive molecular resolution approach in hamiltonian form: n asymptotic analysis. Phys Rev E 94:043321

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Praprotnik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Praprotnik, M., Cortes-Huerto, R., Potestio, R., Delle Site, L. (2018). Adaptive Resolution Molecular Dynamics Technique. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_89-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics