Abstract
One of the oldest initiatives in materials informatics, the PAULING FILE project, is described. It includes the comprehensive database for inorganic crystalline compounds, their atomic structures, intrinsic physical properties and phase diagrams. On top of that, the powerful online retrieval software is introduced, called MPDS, the Materials Platform for Data Science. The practical recipes of storage, exchange and analysis of the large amounts of materials data are given. The focus is made on the modern information technologies and software engineering. As a result, from the large heterogeneous data, holistic conclusions about the entire set of known materials are drawn. They can be regarded as a guideline for the systematic large-scale predictions.
Keywords
- Pauling File
- Material Platform
- Genomic Material
- Intrinsic Physical Properties
- International Union Of Crystallography (IUCR)
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
References
Baader F, Horrocks I, Sattler U (2007) Description logics, Chapter 3. In: Handbook of knowledge representation. Elsevier, Amsterdam
Bazhirov T, Mohammadi M, Ding K, Barabash S (2017) Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing. Bull Am Phys Soc 62. https://adsabs.harvard.edu/abs/2017APS..MAR.C1007B
Bornmann L, Mutz R (2015) Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J Assoc Inf Sci Technol 66(11):2215–2222
Breiman (2001) Random forests. Mach Learn 45:5
Brunner GO, Schwarzenbach D (1971) Zur Abgrenzung der Koordinationssphäre und Ermittlung der Koordinationszahl in Kristallstrukturen. Z Kristallogr 133:127–133
Cenzual K, Berndt M, Brandenburg K, Luong V, Flack E, Villars P (2000) ESDD software package, copyright: Japan Science and Technology Corporation, updates by O. Shcherban. Structure-Properties Company, Lviv
Christensen M et al (2017) Software platforms for electronic/atomistic/mesoscopic modeling: status and perspectives. Integr Mater Manuf Innov 6(1):92
Cuel R, Young R (eds) (2015) Formal ontologies meet industry. In: 7th international workshop proceedings, Springer
Daams JLC, van Vucht IHN, Villars P (1992) Atomic-environment classification of the cubic “intermetallic” structure types. J Alloys Compd 182:1–33
DuCharme B (2013) Learning SPARQL, 2nd edn. O’Reilly Media, Sebastopol, CA
Ewald PP, Hermann C (eds) (1931) Strukturbericht. Akad. Verlagsgesellschaft M.B.H, Leipzig
Fielding R (2000) Architectural styles and the design of network-based software architectures. Doctoral dissertation, University of California, Irvine
Gasteiger J, Engel T (2003) Chemoinformatics: a textbook. Wiley, Weinheim
Gelato L, Parthé E (1987) STRUCTURE TIDY- a computer program to standardize crystal structure data. J Appl Crystallogr 20:139–143
Ghiringhelli LM, Vybiral J, Ahmetcik E, Ouyan R, Levchenko SV, Draxl C, Scheffler M (2017) Learning physical descriptors for materials science by compressed sensing. New J Phys 19:023017
Hahn T (ed) (1983) International tables for crystallography, vol A. In: D. Reidel (ed) Dordrecht, Springer
Hall SR, Allen FH, Brown ID (1991) The Crystallographic Information File (CIF): a new standard archive file for crystallography. Acta Crystallogr A47(6):655–685
Jones MT (2008) Artificial intelligence: a systems approach. Jones & Bartlett Learning, Sudbury
Kong C, Villars P, Iwata S, Rajan K (2012) Mapping the materials gene for binary intermetallic compounds–a visualization schema for crystallographic databases. Comput Sci Discov 5:1
Lide D, editor-in-chief (1997–1998), CRC handbook of chemistry and physics, Boca Raton, CRC Press.
Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park
McKinney W (2010) Data structures for statistical computing in Python. In: Proceedings of the 9-th python in science conference, p 51
Michael M, Moreira J, Shiloach D, Wisniewski R (2007) Scale-up x scale-out: a case study using Nutch/Lucene. In: 2007 IEEE international parallel and distributed processing symposium, p 1
Michel K, Meredig B (2016) Beyond bulk single crystals: a data format for all materials structure–property–processing relationships. MRS Bull 41(8):617–623
Miles R, Hamilton R (2008) Learning UML 2.0: a pragmatic introduction to UML. O’Reilly Media
Murray-Rust P (2013) Personal communications and online blog. https://blogs.ch.cam.ac.uk/pmr
O’Mara J, Meredig B, Michel K (2016) Materials data infrastructure: a case study of the Citrination platform to examine data import, storage, and access. J Miner, Met Mater Soc 68:2031
Obama B (2011) Materials genome initiative of the US Government. https://obamawhitehouse.archives.gov/mgi
Petzow G, Effenberg G (1988–1995) Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams, 15 vols. Wiley-VCH, Weinheim
Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218–230
Rajan K (2015) Materials informatics. Mater Today 15:470
Schmutz J, Wheeler J et al (2004) Quality assessment of the human genome sequence. Nature 429:365
Teorey T, Lightstone S, Nadeau T, Jagadish H (2005) Database modeling & design, 4th edn. Elsevier, Amsterdam
Villars P (1994) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds, principles and practice, vol 1. Wiley, New York, pp 227–275
Villars P, Cenzual K, Daams J, Chen Y, Iwata S (2004) Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB. J Alloys Compd 367(1–2):167–175. https://doi.org/10.1016/j.jallcom.2003.08.060
Villars P, Daams J, Shikata Y, Chen Y, Iwata S (2008) Data-driven generalized atomic environment prediction for binary and multinary inorganic compounds using the periodic number. Chem Met Alloys 1:210–226
Villars P, Iwata S (2013) PAULING FILE verifies/reveals 12 principles in materials science supporting four cornerstones given by nature. Chem Met Alloys 6:81–108
Villars P, Cenzual K, Gladyshevskii R, Iwata S (2018) PAULING FILE – towards a holistic view. In: Materials informatics. Wiley
Xu Y, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50:11S
Acknowledgments
The authors acknowledge funding support from NIH Grant U01HL114476.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Blokhin, E., Villars, P. (2018). The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_62-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-42913-7_62-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42913-7
Online ISBN: 978-3-319-42913-7
eBook Packages: Springer Reference Physics & AstronomyReference Module Physical and Materials Science
Chapter History
-
Latest
The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome- Published:
- 05 September 2019
DOI: https://doi.org/10.1007/978-3-319-42913-7_62-2
-
Original
The PAULING FILE Project and Materials Platform for Data Science: From Big Data Toward Materials Genome- Published:
- 10 August 2018
DOI: https://doi.org/10.1007/978-3-319-42913-7_62-1