Abstract
Experimental chemistry and the younger discipline of computational chemistry have always aspired to increase data volume, velocity, and variety. The recent software developments in machine learning, databases and automation and hardware advances in fast co-processors, networking, and storage have boosted automation and digitization. Computational chemistry is seemingly on the verge of a big-data revolution.
In this chapter, we discuss how many of these data-driven paradigms are part of long-term trend and data have long been at the heart of many chemical problems. Historical repositories of chemical data where the modern cheminformatician can mine high value curated training data are reviewed. Modern automation tools and datasets available for high-data computational chemistry are described. Current applications of computer-driven discovery of molecular materials in optoelectronics (photovoltaics and light-emitting diodes) and electrical energy storage are discussed. Finally, the impact of machine learning approaches to computational chemistry areas of structure-property relationships and chemical space, with an emphasis on generative models, are analyzed.
This is a preview of subscription content, access via your institution.
References
Álvarez-Moreno M, de Graaf C, López N, Maseras F, Poblet JM, Bo C (2015) Managing the computational chemistry big data problem: the ioChem-BD platform. J Chem Inf Model 55:95
Araujo RB, Banerjee A, Panigrahi P, Yang L, Strømme M, Sjödin M, Araujo CM, Ahuja R (2017) Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. J Mater Chem A 5:4430
Behler J (2011a) Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys 134:74106
Behler J (2011b) Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys 13:17930
Behler J (2017) First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chemie Int Ed 56:12828
Behler J, Lorenz S, Reuter K (2007) Representing molecule-surface interactions with symmetry-adapted neural networks. J Chem Phys 127:14705
Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98:146401
Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr Sect B Struct Sci 58:364
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235
Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1978) The protein data bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 185:584
Bjerrum EJ (2017) SMILES enumeration as data augmentation for neural Network modeling of molecules Arxiv.Org
Blank TB, Brown SD, Calhoun AW, Doren DJ (1995) Neural network models of potential energy surfaces. J Chem Phys 103:4129
Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2017) Application of generative autoencoder in de Novo molecular design Mol. Inform
Block P, Sotriffer CA, Dramburg I, Klebe G (2006) AffinDB: a freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Res 34:D522
Blum LC, Reymond J-L (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732
Borodin O, Olguin M, Spear CE, Leiter KW, Knap J (2015) Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26:354003
Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller K-R (2017) Bypassing the Kohn-Sham equations with machine learning. Nat Commun 8:872
Bruno I, Gražulis S, Helliwell JR, Kabekkodu SN, McMahon B, Westbrook J (2017) Crystallography and databases. Data Sci J 16
Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Buongiorno Nardelli M, Curtarolo S (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108:233
Chambers J, Davies M, Gaulton A, Hersey A, Velankar S, Petryszak R, Hastings J, Bellis L, McGlinchey S, Overington JP (2013) UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Cheminform 5:3
Chen X, Liu M, Gilson MK (2001) BindingDB: a web-accessible molecular recognition database. Comb Chem High Throughput Screen 4:719
Cheng L, Assary RS, Qu X, Jain A, Ong SP, Rajput NN, Persson K, Curtiss LA (2015) Accelerating electrolyte discovery for energy storage with high-throughput screening. J Phys Chem Lett 6:283
Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller K-R (2017) Machine learning of accurate energy-conserving molecular force fields. Sci Adv 3:e1603015
Coley CW, Barzilay R, Jaakkola TS, Green WH, Jensen KF (2017a) Prediction of organic reaction outcomes using machine learning. ACS Cent Sci 3:434
Coley CW, Rogers L, Green WH, Jensen KF (2017b) Computer-assisted retrosynthesis based on molecular similarity. ACS Cent Sci 3:1237
Curtarolo S, Setyawan W, Hart GLW, Jahnatek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O, Mehl MJ, Stokes HT, Demchenko DO, Morgan D (2012a) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218
Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno-Nardelli M, Mingo N, Levy O (2012b) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ (2017) The comparative toxicogenomics database: update 2017. Nucleic Acids Res 45:D972
Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344
Ding H, Medasani B, Chen W, Persson KA, Haranczyk M, Asta M (2015) PyDII: a python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds. Comput Phys Commun 193:118
Duvenaud DK, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams RP, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Adv Neural Inf Process Syst 2:2215–2223
Elward JM, Rinderspacher BC (2015) Smooth heuristic optimization on a complex chemical subspace. Phys Chem Chem Phys 17:24322
Er S, Suh C, Marshak MP, Aspuru-Guzik A (2015) Computational design of molecules for an all-quinone redox flow battery. Chem Sci 6:885
Ertl P, Lewis R, Martin E, Polyakov V (2017) In silico generation of novel, drug-like chemical matter using the LSTM neural network Arxiv.Org
Faber J, Fawcett T, IUCr (2002) The powder diffraction file: present and future. Acta Crystallogr Sect B Struct Sci 58:325
Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571
Fink T, Reymond JL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discove. J Chem Inf Model 47:342
Fooshee D, Mood A, Gutman E, Tavakoli M, Urban G, Liu F, Huynh N, Van Vranken D, Baldi P (2018) Deep learning for chemical reaction prediction. Mol Syst Des Eng
Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. arXiv1704.01212 [Cs]
Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045
Goldsmith B (2016) NoMaD repository entry
Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha D-G, Wu T, Markopoulos G, Jeon S, Kang H, Miyazaki H, Numata M, Kim S, Huang W, Hong SI, Baldo M, Adams RP, Aspuru-Guzik A (2016) Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 15:1120
Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268
Goyal A, Gorai P, Peng H, Lany S, Stevanović V (2017) A computational framework for automation of point defect calculations. Comput Mater Sci 130:1
Gražulis S, Chateigner D, Downs RT, Yokochi AFT, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726
Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420
Griffiths R-R, Hernández-Lobato JM (2017) Constrained bayesian optimization for automatic chemical design. ArXiv:1709.05501
Groom CR, Bruno IJ, Lightfoot MP, Ward SC, IUCr (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171
Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A (2017) Objective-Reinforced Generative Adversarial Networks (ORGAN) for sequence generation models. ArXiv:1705.10843
Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G (2017) Generative recurrent networks for De Novo drug design. Mol Inf
Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2:2241
Hachmann J, Olivares-Amaya R, Jinich A, Appleton AL, Blood-Forsythe MA, Seress LR, Roman-Salgado C, Trepte K, Atahan-Evrenk S, Er S, Shrestha S, Mondal R, Sokolov A, Bao Z, Aspuru-Guzik A (2014) Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project. Energy Environ Sci 7:698
Heifets A, Jurisica I (2012) SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents. Nucleic Acids Res 40:D428
Hermann G, Pohl V, Tremblay JC, Paulus B, Hege H-C, Schild A (2016) ORBKIT: a modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data. J Comput Chem 37:1511
Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Bjerre Jensen P, Kermode J, Kitchin JR, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment – a Python library for working with atoms. J Phys Condens Matter 29:273002
Holliday GL, Bartlett GJ, Almonacid DE, O’Boyle NM, Murray-Rust P, Thornton JM, Mitchell JBO (2005) MACiE: a database of enzyme reaction mechanisms. Bioinformatics 21:4315
Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195
Russel D. Johnson II (1999) Computational chemistry comparison and benchmark database. NIST Standard Reference Database Number 101 Release 18, Oct 2016
Jacob CR, Beyhan SM, Bulo RE, Gomes ASP, Götz AW, Kiewisch K, Sikkema J, Visscher L (2011) PyADF - A scripting framework for multiscale quantum chemistry. J Comput Chem 32:2328
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:11002
Janz D, van der Westhuizen J, Hernández-Lobato JM (2017) Actively learning what makes a discrete sequence valid. ArXiv:1708.04465
Jaques N, Gu S, Bahdanau D, Hernández-Lobato JM, Turner RE, Eck D (2016) Sequence Tutor: conservative Fine-Tuning of Sequence Generation Models with KL-control Proceedings.Mlr.Press
Jin W, Coley C, Barzilay R, Jaakkola T (2017) Predicting organic reaction outcomes with Weisfeiler-Lehman network ArXiv:1709.04555 2604
Kaiser J (2005) Science resources. Chemists want NIH to curtail database. Science 308:774
Kanal IY, Hutchison GR (2017) Rapid computational optimization of molecular properties using genetic algorithms: searching across millions of compounds for organic photovoltaic materials ArXiv:1707.02949 [Physics]
Karpathy A (2015)
Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30:595
Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ (2017) Generating and designing DNA with deep generative models ArXiv:1712.06148
Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. Npj Comput Mater 1:15010
Klintenberg M, Derenzo SE, Weber MJ (2002) Potential scintillators identified by electronic structure calculations. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 486:298
Kowalski JA, Su L, Milshtein JD, Brushett FR (2016) Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Curr Opin Chem Eng 13:45
Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder arXiv:1703.01925 [Stat]
Landis DD, Hummelshoj JS, Nestorov S, Greeley J, Dulak M, Bligaard T, Norskov JK, Jacobsen KW (2012) The Computational materials repository. Comput Sci Eng 14:51
Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce de León C, Walsh FC (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243
Lin L (2015) Materials databases infrastructure constructed by first principles calculations: a review. Mater Perform Charact 4:MPC20150014
Lin K, Gómez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG (2016) A redox-flow battery with an alloxazine-based organic electrolyte. Nat Energy 1:16102
Linstrom PJ, Mallard WG (2001) The NIST Chemistry WebBook: a chemical data resource on the Internet. J Chem Eng Data 46:1059
Liu Z, Li Y, Han L, Li J, Liu J, Zhao Z, Nie W, Liu Y, Wang R (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405
Lopez SA, Pyzer-Knapp EO, Simm GN, Lutzow T, Li K, Seress LR, Hachmann J, Aspuru-Guzik A (2016) The Harvard organic photovoltaic dataset. Sci Data 3:160086
Lopez SA, Sanchez-Lengeling B, de Goes Soares J, Aspuru-Guzik A (2017) Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics. Joule 1:857
Lowe DM (2012) Extraction of chemical structures and reactions from the literature. PhD Thesis, Cambridge University, PhD.35691, https://doi.org/10.17863/CAM.16293
Lubbers N, Smith JS, Barros K (2017) Hierarchical modeling of molecular energies using a deep neural network. J Chem Phys 148:241715
Martsinovich N, Troisi A (2011) High-throughput computational screening of chromophores for dye-sensitized solar cells. J Phys Chem C 115:11781
Mattingly CJ, Colby GT, Forrest JN, Boyer JL (2003) The Comparative Toxicogenomics Database (CTD). Environ Health Perspect 111:793
Mayeshiba T, Wu H, Angsten T, Kaczmarowski A, Song Z, Jenness G, Xie W, Morgan D (2017) The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion. Comput Mater Sci 126:90
Merkys A, Mounet N, Cepellotti A, Marzari N, Gražulis S, Pizzi G (2017) A posteriori metadata from automated provenance tracking: integration of AiiDA and TCOD ArXiv:1706.08704
Meyer EF (1997) The first years of the Protein Data Bank. Protein Sci 6:1591
Mueller J, Gifford D, Jaakkola T (2017) Sequence to better sequence: continuous revision of combinatorial structures. ICML 70:2536
Nakata M, Shimazaki T (2017) PubChemQC Project: a large-scale first-principles electronic structure database for data-driven chemistry. J Chem Inf Model 57:1300
Nath SR, Kurup SS, Joshi KA (2016) PyGlobal: a toolkit for automated compilation of DFT-based descriptors. J Comput Chem 37:1505
O’boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839
Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849
Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular De Novo Design through Deep Reinforcement Learning Arxiv.Org
Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis Comput. Comput Mater Sci 68:314
Ong SP, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, Persson KA (2015) The Materials Application Programming Interface (API): a simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles. Comput Mater Sci 97:209
Ørnsø KB, Pedersen CS, Garcia-Lastra JM, Thygesen KS (2014) Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations. Phys Chem Chem Phys 16:16246
Ortiz C, Eriksson O, Klintenberg M (2009) Data mining and accelerated electronic structure theory as a tool in the search for new functional materials Comput. Comput Mater Sci 44:1042
Pampel H, Vierkant P, Scholze F, Bertelmann R, Kindling M, Klump J, Goebelbecker H-J, Gundlach J, Schirmbacher P, Dierolf U (2013) Making research data repositories visible: the re3data.org Registry. PLoS One 8:e78080
Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks R, Irvine SA, Pettersson J, Goncharoff N, Hersey A, Overington JP (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44:D1220
Park MH, Lee YS, Lee H, Han Y-K (2011) Low Li+ binding affinity: an important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J Power Sources 196:5109
Park M-S, Kang Y-S, Im D (2015) A high-speed screening method by combining a high-throughput method and a machine-learning algorithm for developing novel organic electrolytes in rechargeable batteries. ECS Trans 68:75
Park MS, Park I, Kang Y-S, Im D, Doo S-G, Sik Park M, Park I, Kang Y-S, Im D, Doo S-G (2016) A search map for organic additives and solvents applicable in high-voltage rechargeable batteries. Phys Chem Chem Phys 18:26807
Pelzer KM, Cheng L, Curtiss LA (2017) Effects of functional groups in redox-active organic molecules: a high-throughput screening approach. J Phys Chem C 121:237
Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123
Pierce TH, Hohne BA (eds) (1986) Artificial intelligence applications in chemistry (American Chemical Society). Washington, DC
Pineda Flores SD, Martin-Noble GC, Phillips RL, Schrier J (2015) Bio-inspired electroactive organic molecules for aqueous redox flow batteries. 1 Thiophenoquinones. J Phys Chem C 119:21800
Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218
Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27:675
Pyzer-Knapp EO, Suh C, Gómez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik AA, Gomez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik AA, Clarke DR (2015) What is high-throughput virtual screening? a perspective from organic materials discovery. Annu Rev Mater Res 45:195
Pyzer-Knapp EO, Simm GN, Aspuru Guzik A (2016) A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials. Mater Horizons 3:226
Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, Brafman M, Maginn E, Curtiss LA, Persson KA (2015) The Electrolyte Genome project: a big data approach in battery materials discovery. Comput Mater Sci 103:56
Qu X, Zhang Y, Rajput NN, Jain A, Maginn E, Persson KA (2017) Computational design of new magnesium electrolytes with improved properties. J Phys Chem C 121:16126
Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA (2014) Quantum chemistry structures and properties of 134 kilo molecules. Sci Data 1:140022
Reymond J-L (2015) The chemical space project. Acc Chem Res 48:722
Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52:2864
Rupakheti C, Virshup A, Yang W, Beratan DN (2015) Strategy to discover diverse optimal molecules in the small molecule universe. J Chem Inf Model 55:529
Rupakheti C, Al-Saadon R, Zhang Y, Virshup AM, Zhang P, Yang W, Beratan DN (2016) Diverse optimal molecular libraries for organic light-emitting diodes. J Chem Theory Comput 12:1942
Rupp M, Tkatchenko A, Müller K-R, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108:58301
Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A (2017) Optimizing distributions over molecular space. An objective-Reinforced generative adversarial network for inverse-design chemistry (ORGANIC) ChemRxiv 1
Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045
Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A (2017) Quantum-chemical insights from deep tensor neural networks. Nat Commun 8:13890
Schütter C, Husch T, Viswanathan V, Passerini S, Balducci A, Korth M (2016) Rational design of new electrolyte materials for electrochemical double layer capacitors. J Power Sources 326:541
Schwaller P, Gaudin T, Lanyi D, Bekas C, Laino T (2017) Found in translation: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. arXiv:1711.04810
Segler MHS, Waller MP (2017a) Modelling chemical reasoning to predict and invent reactions. Chem A Eur J 23:6118
Segler MHS, Waller MP (2017b) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chem A Eur J 23:5966
Segler MHS, Preuss M, Waller MP (2017) Learning to plan chemical syntheses ArXiv:1708.04202
Shin Y, Liu J, Quigley JJ, Luo H, Lin X (2014) Combinatorial design of copolymer donor materials for bulk heterojunction solar cells. ACS Nano 8:6089
Shu Y, Levine BG (2015) Simulated evolution of fluorophores for light emitting diodes. J Chem Phys 142:104104
Sinai S, Kelsic E, Church GM, Nowak MA (2017) Variational auto-encoding of protein sequences. Arxiv.org 1
Smith JS, Isayev O, Roitberg AE (2017) ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci Data 4:170193
Snyder JC, Rupp M, Hansen K, Müller K-R, Burke K (2012) Finding density functionals with machine learning. Phys Rev Lett 108:253002
Teunissen JL, De Proft F, De Vleeschouwer F (2017) Tuning the HOMO-LUMO energy gap of small diamondoids using inverse molecular design. J Chem Theory Comput 13:1351
Thygesen KS, Jacobsen KW (2016) Making the most of materials computations. Science 354:180
van Deursen R, Reymond J-L (2007) Chemical space travel. Chem Med Chem 2:636
Vanderveen JR, Patiny L, Chalifoux CB, Jessop MJ, Jessop PG, Vanderveen JR, Patiny L, Chalifoux CB, Jessop MJ, Jessop PG (2015) A virtual screening approach to identifying the greenest compound for a task: application to switchable-hydrophilicity solvents. Green Chem 17:5182
Virshup AM, Contreras-García J, Wipf P, Yang W, Beratan DN (2013) Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-Like compounds. J Am Chem Soc 135:7296
Voss C (2015) Modeling molecules with recurrent neural networks
Waller MP, Dresselhaus T, Yang J (2013) JACOB: an enterprise framework for computational chemistry. J Comput Chem 34:1420
Wang S (2017) Seq2seq Fingerprint: an unsupervised deep molecular embedding for drug discovery. Dl.acm.org 285
Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977
Ward AL, Doris SE, Li L, Hughes MA, Qu X, Persson KA, Helms BA (2017) Materials genomics screens for adaptive ion transport behavior by redox-Switchable microporous polymer membranes in lithium–Sulfur batteries. ACS Cent Sci 3:399
Wei JN, Duvenaud D, Aspuru-Guzik A (2016) Neural networks for the prediction of organic chemistry reactions. ACS Cent Sci 2:725
Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V (2017) Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett 2:2187
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074
Yuan G, Gygi F (2010) ESTEST: a framework for the validation and verification of electronic structure codes. Comput Sci Discov 3:15004
Acknowledgments
AAG acknowledges support from The Department of Energy, Office of Basic Energy Sciences under award de-sc0015959. He also thanks Dr. Anders Frøseth for his generous support of this work. RGB acknowledges the Toyota Career Development Chair for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Gómez-Bombarelli, R., Aspuru-Guzik, A. (2018). Machine Learning and Big-Data in Computational Chemistry. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_59-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-42913-7_59-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42913-7
Online ISBN: 978-3-319-42913-7
eBook Packages: Springer Reference Physics & AstronomyReference Module Physical and Materials Science