Skip to main content

Machine Learning and Big-Data in Computational Chemistry

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Experimental chemistry and the younger discipline of computational chemistry have always aspired to increase data volume, velocity, and variety. The recent software developments in machine learning, databases and automation and hardware advances in fast co-processors, networking, and storage have boosted automation and digitization. Computational chemistry is seemingly on the verge of a big-data revolution.

In this chapter, we discuss how many of these data-driven paradigms are part of long-term trend and data have long been at the heart of many chemical problems. Historical repositories of chemical data where the modern cheminformatician can mine high value curated training data are reviewed. Modern automation tools and datasets available for high-data computational chemistry are described. Current applications of computer-driven discovery of molecular materials in optoelectronics (photovoltaics and light-emitting diodes) and electrical energy storage are discussed. Finally, the impact of machine learning approaches to computational chemistry areas of structure-property relationships and chemical space, with an emphasis on generative models, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Álvarez-Moreno M, de Graaf C, López N, Maseras F, Poblet JM, Bo C (2015) Managing the computational chemistry big data problem: the ioChem-BD platform. J Chem Inf Model 55:95

    Article  Google Scholar 

  • Araujo RB, Banerjee A, Panigrahi P, Yang L, Strømme M, Sjödin M, Araujo CM, Ahuja R (2017) Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. J Mater Chem A 5:4430

    Article  Google Scholar 

  • Behler J (2011a) Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys 134:74106

    Article  Google Scholar 

  • Behler J (2011b) Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys 13:17930

    Article  Google Scholar 

  • Behler J (2017) First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chemie Int Ed 56:12828

    Article  Google Scholar 

  • Behler J, Lorenz S, Reuter K (2007) Representing molecule-surface interactions with symmetry-adapted neural networks. J Chem Phys 127:14705

    Article  ADS  Google Scholar 

  • Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98:146401

    Article  ADS  Google Scholar 

  • Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr Sect B Struct Sci 58:364

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235

    Article  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1978) The protein data bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 185:584

    Article  Google Scholar 

  • Bjerrum EJ (2017) SMILES enumeration as data augmentation for neural Network modeling of molecules Arxiv.Org

    Google Scholar 

  • Blank TB, Brown SD, Calhoun AW, Doren DJ (1995) Neural network models of potential energy surfaces. J Chem Phys 103:4129

    Article  ADS  Google Scholar 

  • Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2017) Application of generative autoencoder in de Novo molecular design Mol. Inform

    Google Scholar 

  • Block P, Sotriffer CA, Dramburg I, Klebe G (2006) AffinDB: a freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Res 34:D522

    Article  Google Scholar 

  • Blum LC, Reymond J-L (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732

    Article  Google Scholar 

  • Borodin O, Olguin M, Spear CE, Leiter KW, Knap J (2015) Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26:354003

    Article  Google Scholar 

  • Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller K-R (2017) Bypassing the Kohn-Sham equations with machine learning. Nat Commun 8:872

    Article  ADS  Google Scholar 

  • Bruno I, Gražulis S, Helliwell JR, Kabekkodu SN, McMahon B, Westbrook J (2017) Crystallography and databases. Data Sci J 16

    Google Scholar 

  • Calderon CE, Plata JJ, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl MJ, Hart G, Buongiorno Nardelli M, Curtarolo S (2015) The AFLOW standard for high-throughput materials science calculations. Comput Mater Sci 108:233

    Article  Google Scholar 

  • Chambers J, Davies M, Gaulton A, Hersey A, Velankar S, Petryszak R, Hastings J, Bellis L, McGlinchey S, Overington JP (2013) UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Cheminform 5:3

    Article  Google Scholar 

  • Chen X, Liu M, Gilson MK (2001) BindingDB: a web-accessible molecular recognition database. Comb Chem High Throughput Screen 4:719

    Article  Google Scholar 

  • Cheng L, Assary RS, Qu X, Jain A, Ong SP, Rajput NN, Persson K, Curtiss LA (2015) Accelerating electrolyte discovery for energy storage with high-throughput screening. J Phys Chem Lett 6:283

    Article  Google Scholar 

  • Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller K-R (2017) Machine learning of accurate energy-conserving molecular force fields. Sci Adv 3:e1603015

    Article  ADS  Google Scholar 

  • Coley CW, Barzilay R, Jaakkola TS, Green WH, Jensen KF (2017a) Prediction of organic reaction outcomes using machine learning. ACS Cent Sci 3:434

    Article  Google Scholar 

  • Coley CW, Rogers L, Green WH, Jensen KF (2017b) Computer-assisted retrosynthesis based on molecular similarity. ACS Cent Sci 3:1237

    Article  Google Scholar 

  • Curtarolo S, Setyawan W, Hart GLW, Jahnatek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O, Mehl MJ, Stokes HT, Demchenko DO, Morgan D (2012a) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218

    Article  Google Scholar 

  • Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, Nelson LJ, Hart GLW, Sanvito S, Buongiorno-Nardelli M, Mingo N, Levy O (2012b) AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 58:227

    Article  Google Scholar 

  • Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ (2017) The comparative toxicogenomics database: update 2017. Nucleic Acids Res 45:D972

    Article  Google Scholar 

  • Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344

    Article  Google Scholar 

  • Ding H, Medasani B, Chen W, Persson KA, Haranczyk M, Asta M (2015) PyDII: a python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds. Comput Phys Commun 193:118

    Article  ADS  Google Scholar 

  • Duvenaud DK, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams RP, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Adv Neural Inf Process Syst 2:2215–2223

    Google Scholar 

  • Elward JM, Rinderspacher BC (2015) Smooth heuristic optimization on a complex chemical subspace. Phys Chem Chem Phys 17:24322

    Article  Google Scholar 

  • Er S, Suh C, Marshak MP, Aspuru-Guzik A (2015) Computational design of molecules for an all-quinone redox flow battery. Chem Sci 6:885

    Article  Google Scholar 

  • Ertl P, Lewis R, Martin E, Polyakov V (2017) In silico generation of novel, drug-like chemical matter using the LSTM neural network Arxiv.Org

    Google Scholar 

  • Faber J, Fawcett T, IUCr (2002) The powder diffraction file: present and future. Acta Crystallogr Sect B Struct Sci 58:325

    Article  Google Scholar 

  • Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571

    Article  Google Scholar 

  • Fink T, Reymond JL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discove. J Chem Inf Model 47:342

    Article  Google Scholar 

  • Fooshee D, Mood A, Gutman E, Tavakoli M, Urban G, Liu F, Huynh N, Van Vranken D, Baldi P (2018) Deep learning for chemical reaction prediction. Mol Syst Des Eng

    Google Scholar 

  • Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100

    Article  Google Scholar 

  • Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. arXiv1704.01212 [Cs]

    Google Scholar 

  • Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045

    Article  Google Scholar 

  • Goldsmith B (2016) NoMaD repository entry

    Google Scholar 

  • Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha D-G, Wu T, Markopoulos G, Jeon S, Kang H, Miyazaki H, Numata M, Kim S, Huang W, Hong SI, Baldo M, Adams RP, Aspuru-Guzik A (2016) Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 15:1120

    Article  ADS  Google Scholar 

  • Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268

    Article  Google Scholar 

  • Goyal A, Gorai P, Peng H, Lany S, Stevanović V (2017) A computational framework for automation of point defect calculations. Comput Mater Sci 130:1

    Article  Google Scholar 

  • Gražulis S, Chateigner D, Downs RT, Yokochi AFT, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726

    Article  Google Scholar 

  • Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420

    Article  Google Scholar 

  • Griffiths R-R, Hernández-Lobato JM (2017) Constrained bayesian optimization for automatic chemical design. ArXiv:1709.05501

    Google Scholar 

  • Groom CR, Bruno IJ, Lightfoot MP, Ward SC, IUCr (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171

    Article  Google Scholar 

  • Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A (2017) Objective-Reinforced Generative Adversarial Networks (ORGAN) for sequence generation models. ArXiv:1705.10843

    Google Scholar 

  • Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G (2017) Generative recurrent networks for De Novo drug design. Mol Inf

    Google Scholar 

  • Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2:2241

    Article  Google Scholar 

  • Hachmann J, Olivares-Amaya R, Jinich A, Appleton AL, Blood-Forsythe MA, Seress LR, Roman-Salgado C, Trepte K, Atahan-Evrenk S, Er S, Shrestha S, Mondal R, Sokolov A, Bao Z, Aspuru-Guzik A (2014) Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project. Energy Environ Sci 7:698

    Article  Google Scholar 

  • Heifets A, Jurisica I (2012) SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents. Nucleic Acids Res 40:D428

    Article  Google Scholar 

  • Hermann G, Pohl V, Tremblay JC, Paulus B, Hege H-C, Schild A (2016) ORBKIT: a modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data. J Comput Chem 37:1511

    Article  Google Scholar 

  • Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Bjerre Jensen P, Kermode J, Kitchin JR, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment – a Python library for working with atoms. J Phys Condens Matter 29:273002

    Article  Google Scholar 

  • Holliday GL, Bartlett GJ, Almonacid DE, O’Boyle NM, Murray-Rust P, Thornton JM, Mitchell JBO (2005) MACiE: a database of enzyme reaction mechanisms. Bioinformatics 21:4315

    Article  Google Scholar 

  • Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195

    Article  ADS  Google Scholar 

  • Russel D. Johnson II (1999) Computational chemistry comparison and benchmark database. NIST Standard Reference Database Number 101 Release 18, Oct 2016

    Google Scholar 

  • Jacob CR, Beyhan SM, Bulo RE, Gomes ASP, Götz AW, Kiewisch K, Sikkema J, Visscher L (2011) PyADF - A scripting framework for multiscale quantum chemistry. J Comput Chem 32:2328

    Article  Google Scholar 

  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:11002

    Article  ADS  Google Scholar 

  • Janz D, van der Westhuizen J, Hernández-Lobato JM (2017) Actively learning what makes a discrete sequence valid. ArXiv:1708.04465

    Google Scholar 

  • Jaques N, Gu S, Bahdanau D, Hernández-Lobato JM, Turner RE, Eck D (2016) Sequence Tutor: conservative Fine-Tuning of Sequence Generation Models with KL-control Proceedings.Mlr.Press

    Google Scholar 

  • Jin W, Coley C, Barzilay R, Jaakkola T (2017) Predicting organic reaction outcomes with Weisfeiler-Lehman network ArXiv:1709.04555 2604

    Google Scholar 

  • Kaiser J (2005) Science resources. Chemists want NIH to curtail database. Science 308:774

    Article  Google Scholar 

  • Kanal IY, Hutchison GR (2017) Rapid computational optimization of molecular properties using genetic algorithms: searching across millions of compounds for organic photovoltaic materials ArXiv:1707.02949 [Physics]

    Google Scholar 

  • Karpathy A (2015)

    Google Scholar 

  • Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30:595

    Article  ADS  Google Scholar 

  • Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ (2017) Generating and designing DNA with deep generative models ArXiv:1712.06148

    Google Scholar 

  • Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. Npj Comput Mater 1:15010

    Article  ADS  Google Scholar 

  • Klintenberg M, Derenzo SE, Weber MJ (2002) Potential scintillators identified by electronic structure calculations. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 486:298

    Article  ADS  Google Scholar 

  • Kowalski JA, Su L, Milshtein JD, Brushett FR (2016) Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Curr Opin Chem Eng 13:45

    Article  Google Scholar 

  • Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder arXiv:1703.01925 [Stat]

    Google Scholar 

  • Landis DD, Hummelshoj JS, Nestorov S, Greeley J, Dulak M, Bligaard T, Norskov JK, Jacobsen KW (2012) The Computational materials repository. Comput Sci Eng 14:51

    Article  Google Scholar 

  • Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce de León C, Walsh FC (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243

    Article  Google Scholar 

  • Lin L (2015) Materials databases infrastructure constructed by first principles calculations: a review. Mater Perform Charact 4:MPC20150014

    Article  Google Scholar 

  • Lin K, Gómez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG (2016) A redox-flow battery with an alloxazine-based organic electrolyte. Nat Energy 1:16102

    Article  ADS  Google Scholar 

  • Linstrom PJ, Mallard WG (2001) The NIST Chemistry WebBook: a chemical data resource on the Internet. J Chem Eng Data 46:1059

    Article  Google Scholar 

  • Liu Z, Li Y, Han L, Li J, Liu J, Zhao Z, Nie W, Liu Y, Wang R (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405

    Article  Google Scholar 

  • Lopez SA, Pyzer-Knapp EO, Simm GN, Lutzow T, Li K, Seress LR, Hachmann J, Aspuru-Guzik A (2016) The Harvard organic photovoltaic dataset. Sci Data 3:160086

    Article  Google Scholar 

  • Lopez SA, Sanchez-Lengeling B, de Goes Soares J, Aspuru-Guzik A (2017) Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics. Joule 1:857

    Article  Google Scholar 

  • Lowe DM (2012) Extraction of chemical structures and reactions from the literature. PhD Thesis, Cambridge University, PhD.35691, https://doi.org/10.17863/CAM.16293

  • Lubbers N, Smith JS, Barros K (2017) Hierarchical modeling of molecular energies using a deep neural network. J Chem Phys 148:241715

    Article  ADS  Google Scholar 

  • Martsinovich N, Troisi A (2011) High-throughput computational screening of chromophores for dye-sensitized solar cells. J Phys Chem C 115:11781

    Article  Google Scholar 

  • Mattingly CJ, Colby GT, Forrest JN, Boyer JL (2003) The Comparative Toxicogenomics Database (CTD). Environ Health Perspect 111:793

    Article  Google Scholar 

  • Mayeshiba T, Wu H, Angsten T, Kaczmarowski A, Song Z, Jenness G, Xie W, Morgan D (2017) The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion. Comput Mater Sci 126:90

    Article  Google Scholar 

  • Merkys A, Mounet N, Cepellotti A, Marzari N, Gražulis S, Pizzi G (2017) A posteriori metadata from automated provenance tracking: integration of AiiDA and TCOD ArXiv:1706.08704

    Google Scholar 

  • Meyer EF (1997) The first years of the Protein Data Bank. Protein Sci 6:1591

    Article  Google Scholar 

  • Mueller J, Gifford D, Jaakkola T (2017) Sequence to better sequence: continuous revision of combinatorial structures. ICML 70:2536

    Google Scholar 

  • Nakata M, Shimazaki T (2017) PubChemQC Project: a large-scale first-principles electronic structure database for data-driven chemistry. J Chem Inf Model 57:1300

    Article  Google Scholar 

  • Nath SR, Kurup SS, Joshi KA (2016) PyGlobal: a toolkit for automated compilation of DFT-based descriptors. J Comput Chem 37:1505

    Article  Google Scholar 

  • O’boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839

    Article  Google Scholar 

  • Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849

    Article  Google Scholar 

  • Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular De Novo Design through Deep Reinforcement Learning Arxiv.Org

    Google Scholar 

  • Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis Comput. Comput Mater Sci 68:314

    Article  Google Scholar 

  • Ong SP, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, Persson KA (2015) The Materials Application Programming Interface (API): a simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles. Comput Mater Sci 97:209

    Article  Google Scholar 

  • Ørnsø KB, Pedersen CS, Garcia-Lastra JM, Thygesen KS (2014) Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations. Phys Chem Chem Phys 16:16246

    Article  Google Scholar 

  • Ortiz C, Eriksson O, Klintenberg M (2009) Data mining and accelerated electronic structure theory as a tool in the search for new functional materials Comput. Comput Mater Sci 44:1042

    Article  Google Scholar 

  • Pampel H, Vierkant P, Scholze F, Bertelmann R, Kindling M, Klump J, Goebelbecker H-J, Gundlach J, Schirmbacher P, Dierolf U (2013) Making research data repositories visible: the re3data.org Registry. PLoS One 8:e78080

    Article  ADS  Google Scholar 

  • Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks R, Irvine SA, Pettersson J, Goncharoff N, Hersey A, Overington JP (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44:D1220

    Article  Google Scholar 

  • Park MH, Lee YS, Lee H, Han Y-K (2011) Low Li+ binding affinity: an important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J Power Sources 196:5109

    Article  Google Scholar 

  • Park M-S, Kang Y-S, Im D (2015) A high-speed screening method by combining a high-throughput method and a machine-learning algorithm for developing novel organic electrolytes in rechargeable batteries. ECS Trans 68:75

    Article  Google Scholar 

  • Park MS, Park I, Kang Y-S, Im D, Doo S-G, Sik Park M, Park I, Kang Y-S, Im D, Doo S-G (2016) A search map for organic additives and solvents applicable in high-voltage rechargeable batteries. Phys Chem Chem Phys 18:26807

    Article  Google Scholar 

  • Pelzer KM, Cheng L, Curtiss LA (2017) Effects of functional groups in redox-active organic molecules: a high-throughput screening approach. J Phys Chem C 121:237

    Article  Google Scholar 

  • Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123

    Article  Google Scholar 

  • Pierce TH, Hohne BA (eds) (1986) Artificial intelligence applications in chemistry (American Chemical Society). Washington, DC

    Google Scholar 

  • Pineda Flores SD, Martin-Noble GC, Phillips RL, Schrier J (2015) Bio-inspired electroactive organic molecules for aqueous redox flow batteries. 1 Thiophenoquinones. J Phys Chem C 119:21800

    Article  Google Scholar 

  • Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA: automated interactive infrastructure and database for computational science. Comput Mater Sci 111:218

    Article  Google Scholar 

  • Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27:675

    Article  ADS  Google Scholar 

  • Pyzer-Knapp EO, Suh C, Gómez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik AA, Gomez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik AA, Clarke DR (2015) What is high-throughput virtual screening? a perspective from organic materials discovery. Annu Rev Mater Res 45:195

    Article  ADS  Google Scholar 

  • Pyzer-Knapp EO, Simm GN, Aspuru Guzik A (2016) A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials. Mater Horizons 3:226

    Article  Google Scholar 

  • Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, Brafman M, Maginn E, Curtiss LA, Persson KA (2015) The Electrolyte Genome project: a big data approach in battery materials discovery. Comput Mater Sci 103:56

    Article  Google Scholar 

  • Qu X, Zhang Y, Rajput NN, Jain A, Maginn E, Persson KA (2017) Computational design of new magnesium electrolytes with improved properties. J Phys Chem C 121:16126

    Article  Google Scholar 

  • Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA (2014) Quantum chemistry structures and properties of 134 kilo molecules. Sci Data 1:140022

    Article  Google Scholar 

  • Reymond J-L (2015) The chemical space project. Acc Chem Res 48:722

    Article  Google Scholar 

  • Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52:2864

    Article  Google Scholar 

  • Rupakheti C, Virshup A, Yang W, Beratan DN (2015) Strategy to discover diverse optimal molecules in the small molecule universe. J Chem Inf Model 55:529

    Article  Google Scholar 

  • Rupakheti C, Al-Saadon R, Zhang Y, Virshup AM, Zhang P, Yang W, Beratan DN (2016) Diverse optimal molecular libraries for organic light-emitting diodes. J Chem Theory Comput 12:1942

    Article  Google Scholar 

  • Rupp M, Tkatchenko A, Müller K-R, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108:58301

    Article  ADS  Google Scholar 

  • Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A (2017) Optimizing distributions over molecular space. An objective-Reinforced generative adversarial network for inverse-design chemistry (ORGANIC) ChemRxiv 1

    Google Scholar 

  • Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045

    Article  Google Scholar 

  • Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A (2017) Quantum-chemical insights from deep tensor neural networks. Nat Commun 8:13890

    Article  ADS  Google Scholar 

  • Schütter C, Husch T, Viswanathan V, Passerini S, Balducci A, Korth M (2016) Rational design of new electrolyte materials for electrochemical double layer capacitors. J Power Sources 326:541

    Article  Google Scholar 

  • Schwaller P, Gaudin T, Lanyi D, Bekas C, Laino T (2017) Found in translation: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. arXiv:1711.04810

    Google Scholar 

  • Segler MHS, Waller MP (2017a) Modelling chemical reasoning to predict and invent reactions. Chem A Eur J 23:6118

    Article  Google Scholar 

  • Segler MHS, Waller MP (2017b) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chem A Eur J 23:5966

    Article  Google Scholar 

  • Segler MHS, Preuss M, Waller MP (2017) Learning to plan chemical syntheses ArXiv:1708.04202

    Google Scholar 

  • Shin Y, Liu J, Quigley JJ, Luo H, Lin X (2014) Combinatorial design of copolymer donor materials for bulk heterojunction solar cells. ACS Nano 8:6089

    Article  Google Scholar 

  • Shu Y, Levine BG (2015) Simulated evolution of fluorophores for light emitting diodes. J Chem Phys 142:104104

    Article  ADS  Google Scholar 

  • Sinai S, Kelsic E, Church GM, Nowak MA (2017) Variational auto-encoding of protein sequences. Arxiv.org 1

    Google Scholar 

  • Smith JS, Isayev O, Roitberg AE (2017) ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci Data 4:170193

    Article  Google Scholar 

  • Snyder JC, Rupp M, Hansen K, Müller K-R, Burke K (2012) Finding density functionals with machine learning. Phys Rev Lett 108:253002

    Article  ADS  Google Scholar 

  • Teunissen JL, De Proft F, De Vleeschouwer F (2017) Tuning the HOMO-LUMO energy gap of small diamondoids using inverse molecular design. J Chem Theory Comput 13:1351

    Article  Google Scholar 

  • Thygesen KS, Jacobsen KW (2016) Making the most of materials computations. Science 354:180

    Article  ADS  Google Scholar 

  • van Deursen R, Reymond J-L (2007) Chemical space travel. Chem Med Chem 2:636

    Article  Google Scholar 

  • Vanderveen JR, Patiny L, Chalifoux CB, Jessop MJ, Jessop PG, Vanderveen JR, Patiny L, Chalifoux CB, Jessop MJ, Jessop PG (2015) A virtual screening approach to identifying the greenest compound for a task: application to switchable-hydrophilicity solvents. Green Chem 17:5182

    Article  Google Scholar 

  • Virshup AM, Contreras-García J, Wipf P, Yang W, Beratan DN (2013) Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-Like compounds. J Am Chem Soc 135:7296

    Article  Google Scholar 

  • Voss C (2015) Modeling molecules with recurrent neural networks

    Google Scholar 

  • Waller MP, Dresselhaus T, Yang J (2013) JACOB: an enterprise framework for computational chemistry. J Comput Chem 34:1420

    Article  Google Scholar 

  • Wang S (2017) Seq2seq Fingerprint: an unsupervised deep molecular embedding for drug discovery. Dl.acm.org 285

    Google Scholar 

  • Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977

    Article  Google Scholar 

  • Ward AL, Doris SE, Li L, Hughes MA, Qu X, Persson KA, Helms BA (2017) Materials genomics screens for adaptive ion transport behavior by redox-Switchable microporous polymer membranes in lithium–Sulfur batteries. ACS Cent Sci 3:399

    Article  Google Scholar 

  • Wei JN, Duvenaud D, Aspuru-Guzik A (2016) Neural networks for the prediction of organic chemistry reactions. ACS Cent Sci 2:725

    Article  Google Scholar 

  • Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V (2017) Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett 2:2187

    Article  Google Scholar 

  • Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31

    Article  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668

    Article  Google Scholar 

  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074

    Article  Google Scholar 

  • Yuan G, Gygi F (2010) ESTEST: a framework for the validation and verification of electronic structure codes. Comput Sci Discov 3:15004

    Article  Google Scholar 

Download references

Acknowledgments

AAG acknowledges support from The Department of Energy, Office of Basic Energy Sciences under award de-sc0015959. He also thanks Dr. Anders Frøseth for his generous support of this work. RGB acknowledges the Toyota Career Development Chair for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Gómez-Bombarelli .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gómez-Bombarelli, R., Aspuru-Guzik, A. (2018). Machine Learning and Big-Data in Computational Chemistry. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics