Skip to main content

Connecting Lower and Higher Scales in Crystal Plasticity Modeling

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Metallic materials have a hierarchy of structures ranging in scale from nm to mm. We generalize the notion of crystalline plasticity models to include a range of model constructs that address phenomena associated with evolution of dislocations in crystals across a range of length and timescales. These model constructs range from coarse-grained atomistics, microscopic phase field models, and dislocation field models, to discrete dislocation dynamics, statistical continuum dislocation models, and on up to mesoscale generalized continuum models of gradient, micropolar, or micromorphic type, as well as local continuum crystal plasticity that can be applied over many grains. Key phenomena are introduced and mapped onto the capabilities of various scale-specific model constructs for dislocation plasticity. We discuss concurrent and hierarchical multiscale model transitions in space and time and summarize key challenges in closing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu Al-Rub RK, Voyiadjis GZ, Bammann DJ (2007) A thermodynamic based higher-order gradient theory for size dependent plasticity. Int J Solids Struct 44:2888–2923

    Google Scholar 

  • Acharya A (2001) A model of crystal plasticity based on the theory of continuously distributed dislocations. J Mech Phys Solids 49:761–784

    Article  ADS  MATH  Google Scholar 

  • Acharya A (2003) Driving forces and boundary conditions in continuum dislocation mechanics. Proc R Soc Lond A 459:1343–1363

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Acharya A, Roy A, Sawant A (2006) Continuum theory and methods for coarse-grained, mesoscopic plasticity. Scr Mater 54:705–710

    Article  Google Scholar 

  • Acharya A, Beaudoin AJ, Miller R (2008) New perspectives in plasticity theory: dislocation nucleation, waves and partial continuity of the plastic strain rate. Math Mech Solids 13(3–4):292–315

    Article  MathSciNet  MATH  Google Scholar 

  • Akarapu S, Zbib HM, Bahr DF (2010) Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int J Plast 16:239–257

    Article  MATH  Google Scholar 

  • Amelang JS, Venturini GN, Kochmann DM (2013) Microstructure evolution during nanoindentation by the quasicontinuum method. Proc Appl Math Mech 13:553–556

    Article  Google Scholar 

  • Amelang JS, Venturini GN, Kochmann DM (2015) Summation rules for a fully nonlocal energy-based quasicontinuum method. J Mech Phys Solids 82:378–413

    Article  ADS  MathSciNet  Google Scholar 

  • Amodeo RJ, Ghoniem NM (1988) A review of experimental-observations and theoretical-models of dislocation cells and subgrains. Res Mechanica 23(2–3):137–160

    Google Scholar 

  • Amodeo RJ, Ghoniem NM (1990) Dislocation dynamics. I. A proposed methodology for micromechanics. Phys Rev B 41:6958

    Article  ADS  Google Scholar 

  • Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47(5):1597–1611

    Article  Google Scholar 

  • Arsenlis A, Parks DM (2002) Modeling the evolution of crystallographic dislocation density in crystal plasticity. J Mech Phys Solids 50:1979–2009

    Article  ADS  MATH  Google Scholar 

  • Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15:553–595

    Article  ADS  Google Scholar 

  • Asaro RJ (1983) Crystal plasticity. ASME J Appl Mech 50:921–934

    Article  MATH  Google Scholar 

  • Aslan O, Cordero NM, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49:1311–1325

    Google Scholar 

  • Baker KL, Curtin WA (2016) Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb. J Mech Phys Solids 92:297–312

    Article  ADS  Google Scholar 

  • Bayley CJ, Brekelmans WAM, Geers MGD (2006) A comparison of dislocation-induced back stress formulations in strain gradient crystal plasticity. Int J Solids Struct 43:7268–7286

    Article  MATH  Google Scholar 

  • Bertin N, Upadhyay MV, Pradalier C, Capolungo L (2015) A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model Simul Mater Sci Eng 23(6):065009

    Article  ADS  Google Scholar 

  • Bieler TR, Eisenlohr P, Roters F, Kumar D, Mason DE, Crimp MA, Raabe D (2009) The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int J Plast 25:1655–1683

    Google Scholar 

  • Binder A, Luskin M, Perez D, Voter AF (2015) Analysis of transition state theory rates upon spatial coarse-graining. Multiscale Model Simul 13:890–915

    Article  MathSciNet  MATH  Google Scholar 

  • Buehler MJ, Hartmaier A, Duchaineau MA, Abraham FF, Gao H (2005) The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation. Acta Mech Sinica 21:103–111

    Article  ADS  MATH  Google Scholar 

  • Buchheit TE, Wellman GW, Battaille C (2005) Investigating the limits of polycrystal plasticity modeling. Int J Plast 21(2):221–249

    Google Scholar 

  • Busso EP, Meissonnier FT, O’Dowd NP (2000) Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids 48:2333–2361

    Article  ADS  MATH  Google Scholar 

  • Cai W, Arsenlis A, Weingberger CR, Bulatov VV (2006) A non-singular continuum theory of dislocations. J Mech Phys Solids 54:561–587

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cai W, Sills RB, Barnett DM, Nix WD (2014) Modeling a distribution of point defects as misfitting inclusions in stressed solids. J Mech Phys Solids 66:154–171

    Article  ADS  MATH  Google Scholar 

  • Chen Y (2009) Reformulation of microscopic balance equations for multiscale materials modeling. J Chem Phys 130:134706

    Article  ADS  Google Scholar 

  • Chen L, Chen J, Lebensohn R, Chen L-Q (2014) An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput Methods Appl Mech Eng 285:829–848

    Article  ADS  MathSciNet  Google Scholar 

  • Cheong KS, Busso EP, Arsenlis A (2005) A study of microstructural length scale effects on the behaviour of fcc polycrystals using strain gradient concepts. Int J Plast 21:1797–1814

    Google Scholar 

  • Cho J, Junge T, Molinari F-F, Anciaux G (2015) Toward a 3D coupled atomistics and discrete dislocation dynamics simulation: dislocation core structures and Peierls stresses with several character angles in FCC aluminum. Adv Model Simul Eng Sci 2:12. https://doi.org/10.1186/s40323-015-0028-6

    Article  Google Scholar 

  • Cordero NM, Gaubert A, Forest S, Busso EP, Gallerneau F, Kruch S (2010) Size effects in generalised continuum crystal plasticity for two-phase laminates. J Mech Phys Solids 58:1963–1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cordero NM, Forest S, Busso EP (2013) Micromorphic modelling of grain size effects in metal polycrystals. GAMM-Mitteilungen 36(2):186–202

    Article  MathSciNet  MATH  Google Scholar 

  • Crone JC, Chung PW, Leiter KW, Knap J, Aubry S, Hommes G, Arsenlis A (2014) A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries. Model Simul Mater Sci Eng 22:035014–035041

    Article  ADS  Google Scholar 

  • Deng J, El-Azab A (2010) Temporal statistics and coarse graining of dislocation ensembles. Philos Mag 90(27–28):3651–3678

    Article  ADS  Google Scholar 

  • Devincre, B, Madec R, Monnet G, Queyreau S, Gatti R, Kubin L (2011) Modeling crystal plasticity with dislocation dynamics simulations: the ‘microMegas’ code. In: Mechanics of nano-objects. Presses del’Ecole des Mines de Paris, Paris, pp 81–100. http://zig.onera.fr/mm_home_page/doc/Article_mM_2011.pdf

  • Dewald MP, Curtin WA (2007a) Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Philos Mag 87:4615–4641

    Article  ADS  Google Scholar 

  • Dewald MP, Curtin WA (2007b) Multiscale modeling of dislocation/grain boundary interactions: I. Edge dislocations impinging on S11 (113) tilt boundary in Al. Model Simul Mater Sci Eng 15:S193–S215

    Article  ADS  Google Scholar 

  • Dewald MP, Curtin WA (2011) Multiscale modeling of dislocation/grain-boundary interactions: III. 60° dislocations impinging on Σ3:Σ9 and Σ11 tilt boundaries in Al. Model Simul Mater Sci Eng 19:055002

    Article  ADS  Google Scholar 

  • Dunne FPE, Kiwanuka R, Wilkinson AJ (2012) Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proc R Soc A 468:2509–2531

    Article  ADS  Google Scholar 

  • Eidel B, Stukowski A (2009) A variational formulation of the quasicontinuum method based on energy sampling in clusters. J Mech Phys Solids 57:87–108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • El-Azab A (2000) Statistical mechanics treatment of the evolution of dislocation distributions in single crystals. Phys Rev B 61(18):11956–11966

    Article  ADS  Google Scholar 

  • El-Azab A (2006) Statistical mechanics of dislocation systems. Scr Mater 54:723–727

    Article  Google Scholar 

  • El-Azab A, Deng J, Tang M (2007) Statistical characterization of dislocation ensembles. Philos Mag 87(8–9):1201–1223

    Article  ADS  Google Scholar 

  • Evers LP, Brekelmans WAM, Geers MGD (2004) Non-local crystal plasticity model with intrinsic SSC and GND effects. J Mech Phys Solids 52:2379–2401

    Google Scholar 

  • Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 160:71–111

    Article  MATH  Google Scholar 

  • Forest S, Barbe F, Cailletaud G (2000) Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int J Solids Struct 37:7105–7126

    Article  MathSciNet  MATH  Google Scholar 

  • Gerken JM, Dawson PR (2008) A crystal plasticity model that incorporates stresses and strains due to slip gradients. J Mech Phys Solids 56(4):1651–1672

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ghoniem NM (2005) A perspective on dislocation dynamics. In Yip S (ed) Handbook of materials modeling. Vol 1. Methods and models. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385

    Article  MATH  Google Scholar 

  • Ghosh S, Bai J, Raghavan P (2007) Concurrent multi-level model for damage evolution in micro structurally debonding composites. Mech Mater 39(3):241–266

    Article  Google Scholar 

  • Ghosh S, Shahba A, Tu X, Huskins EL, Schuster BE (2016a) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: image-based model with experimental validation. Int J Plast 87:69–85

    Article  Google Scholar 

  • Ghosh S, Weber G, Keshavarz S (2016b) Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech Res Commun 78:34–46

    Article  Google Scholar 

  • Groh S, Zbib HM (2009) Advances in discrete dislocations dynamics and multiscale modeling. J Eng Mater Technol 131:041209-1–041209-10

    Article  Google Scholar 

  • Groh S, Marin EB, Horstemeyer MF, Zbib HM (2009) Multiscale modeling of the plasticity in an aluminum single crystal. Int J Plast 25:1456–1473

    Article  MATH  Google Scholar 

  • Groma I (1997) Link between the microscopic and mesocopic length-scale description of the collective behavior of dislocations. Phys Rev B 56(10):5807–5813

    Article  ADS  Google Scholar 

  • Groma I (2010) Statistical physical approach to describe the collective properties of dislocations. In: Gumbsch P, Pippan R (eds) Multiscale modelling of plasticity and fracture by means of dislocation mechanics. CISM International Centre for Mechanical Sciences, Vienna, pp 213–270. ISBN 978-3-7091-0283-1

    Chapter  MATH  Google Scholar 

  • Groma I, Csikor FF, Zaiser M (2003) Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater 51:1271

    Article  Google Scholar 

  • Groma I, Vandrus Z, Ispanovity PD (2015) Scale-free phase field theory of dislocations. Phys Rev Lett 114:015503

    Article  ADS  Google Scholar 

  • Groma I, Zaiser M, Ispanovity PD (2016) Dislocation patterning in a 2D continuum theory of dislocations. arXiv:1601.07831 [cond-mat.mtrl-sci]

    Google Scholar 

  • Gulluoglu AN, Srolovitz DJ, Lesar R, Lomdahl PS (1989) Dislocation distributions in two dimensions. Scr Metall 23:1347–1352

    Google Scholar 

  • Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Anand L (2007) A gradient theory for single-crystal plasticity. Model Simul Mater Sci Eng 15:S263–S270

    Article  ADS  Google Scholar 

  • Guruprasad PJ, Benzerga AA (2008) Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis. J Mech Phys Solids 56:132–156

    Article  ADS  MATH  Google Scholar 

  • Hartley CS, Mishin Y (2005) Representation of dislocation cores using Nye tensor distributions. Mater Sci Eng A 400–401:18–21

    Article  Google Scholar 

  • Hochrainer T (2015) Multipole expansion of continuum dislocation dynamics in terms of alignment tensors. Philos Mag 95:1321–1367

    Article  ADS  Google Scholar 

  • Hochrainer T, Zaiser M, Gumbsch P (2007) A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. Philos Mag 87:1261–1282

    Article  ADS  Google Scholar 

  • Hochrainer T, Sandfeld S, Zaiser M, Gumbsch P (2014) Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J Mech Phys Solids 63:167–178

    Article  ADS  Google Scholar 

  • Hurtado DE, Ortiz M (2013) Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int J Numer Methods Eng 93:66–79

    Article  MathSciNet  MATH  Google Scholar 

  • Hussein AM, El-Awady JA (2016) Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals. J Mech Phys Solids 91:126–144

    Article  ADS  Google Scholar 

  • Irving J, Kirkwood J (1950) The statistical mechanical theory of transport processes. IV The equations of hydrodynamics. J Chem Phys 8:817–829

    Article  ADS  MathSciNet  Google Scholar 

  • Kang K, Yin J, Cai W (2014) Stress dependence of cross slip energy barrier for face-centered cubic nickel. J Mech Phys Solids 62:181–193

    Article  ADS  Google Scholar 

  • Kapetanou O, Koutsos V, Theotokoglou E, Weygand D, Zaiser M (2015) Statistical analysis and stochastic dislocation based modeling of microplasticity. J Mech Behav Mater 24(3–4):105–113

    Google Scholar 

  • Keralavarma SM, Benzerga AA (2015) High-temperature discrete dislocation plasticity. J Mech Phys Solids 82:1–22

    Article  ADS  MathSciNet  Google Scholar 

  • Keshavarz S, Ghosh S (2013) Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater 61:6549–6561

    Article  Google Scholar 

  • Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity FE model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17–31

    Article  Google Scholar 

  • Khraishi T, Zbib HM (2002) Free-surface effects in 3D dislocation dynamics: formulation and modeling. ASME J Eng Mater Technol 124(3):342–351

    Article  Google Scholar 

  • Kim WK, Luskin M, Perez D, Voter AF, Tadmor EB (2014) Hyper-QC: an accelerated finite-temperature quasicontinuum method using hyperdynamics. J Mech Phys Solids 63:94–112

    Article  ADS  MATH  Google Scholar 

  • Kirkwood JG (1946) The statistical mechanical theory of transport processes. I. General theory. J Chem Phys 14:180

    Article  ADS  Google Scholar 

  • Knap J, Ortiz M (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49:1899–1923

    Article  ADS  MATH  Google Scholar 

  • Kochmann DM, Venturini GN (2014) A meshless quasicontinuum method based on local maximum-entropy interpolation. Model Simul Mater Sci Eng 22:034007–034035

    Article  ADS  Google Scholar 

  • Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550

    Article  ADS  MATH  Google Scholar 

  • Kwon S, Lee Y, Park JY, Sohn D, Lim JH, Im S (2009) An efficient three-dimensional adaptive quasicontinuum method using variable-node elements. J Comput Phys 228:4789–4810

    Article  ADS  MATH  Google Scholar 

  • Lepinoux J, Kubin LP (1987) The dynamic organization of dislocation structures – a simulation. Scr Metall 21:833–838

    Article  Google Scholar 

  • LeSar R, Rickman JM (2004) Incorporation of local structure in continuous theory of dislocations. Phys Rev B 69:172105

    Google Scholar 

  • Liu B, Arsenlis A, Aubry S (2016) Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material. Model Simul Mater Sci Eng 24:055013

    Article  ADS  Google Scholar 

  • Lloyd JT (2010) Implications of limited slip in crystal plasticity. M.S. Thesis, Woodruff School of Mechanical Engineering, Georgia Institute of Technology

    Google Scholar 

  • Ma A, Roters F, Raabe D (2006) A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater 54:2169–2179

    Article  Google Scholar 

  • Marian J, Venturini G, Hansen BL, Knap J, Ortiz M, Campbell GH (2010) Finite-temperature extension of the quasicontinuum method using Langevin dynamics: entropy losses and analysis of errors. Model Simul Mater Sci Eng 18(1):015003

    Article  ADS  Google Scholar 

  • Martınez E, Mariana J, Arsenlis A, Victoria M, Perlado JM (2008) Atomistically informed dislocation dynamics in fcc crystals. J Mech Phys Solids 56:869–895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Matveev MV, Selivanikova OV, Cherepanov DN (2016) Formation of deformation substructures in FCC crystals under the influence of point defect fluxes. Mater Sci Eng 124:012129

    Google Scholar 

  • Mayeur JR, McDowell DL (2011) Bending of single crystal thin films as predicted by micropolar crystal plasticity. Int J Eng Sci 49:1357–1366

    Article  MATH  Google Scholar 

  • Mayeur JR, McDowell DL (2013) An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J Mech Phys Solids 61(9):1935–1954

    Article  ADS  MathSciNet  Google Scholar 

  • Mayeur JR, McDowell DL (2014) A comparison of Gurtin-type and micropolar single crystal plasticity with generalized stresses. Int J Plast 57:29–51

    Article  Google Scholar 

  • Mayeur JR, McDowell DL (2015) Micropolar crystal plasticity simulations of particle strengthening. Model Simul Mater Sci Eng 23(6):065007

    Article  ADS  Google Scholar 

  • Mayeur JR, McDowell DL, Bammann DJ (2011) Dislocation-based micropolar single crystal plasticity: comparison of multi- and single-criterion theories. J Mech Phys Solids 59(2):398–422

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • McDowell DL (2008) Viscoplasticity of heterogeneous metallic materials. Mater Sci Eng R: Rep 62(3):67–123

    Article  Google Scholar 

  • McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plast 26(9):1280–1309

    Article  MATH  Google Scholar 

  • Mendis BG, Mishin Y, Hartley CS, Hemker KJ (2006) Use of the Nye tensor in analyzing HREM images of bcc screw dislocations. Philos Mag 86(29–31):4607–4640

    Article  ADS  Google Scholar 

  • Miller R, Tadmor EB, Phillips R, Ortiz M (1998a) Quasicontinuum simulation of fracture at the atomic scale. Model Simul Mater Sci Eng 6(5):607–638

    Article  ADS  Google Scholar 

  • Miller R, Ortiz M, Phillips R, Shenoy V, Tadmor EB (1998b) Quasicontinuum models of fracture and plasticity. Eng Fract Mech 61(3–4):427–444

    Article  Google Scholar 

  • Monavari M, Sandfeld S, Zaiser M (2016) Continuum representation of systems of dislocation lines: a general method for deriving closed-form evolution equations. J Mech Phys Solids 95:575–601

    Article  ADS  MathSciNet  Google Scholar 

  • Nguyen LD, Baker KL, Warner DH (2011) Atomistic predictions of dislocation nucleation with transition state theory. Phys Rev B 84:024118

    Article  ADS  Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  Google Scholar 

  • Pavia F, Curtin WA (2015) Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS. Model Simul Mater Sci Eng 23:055002 (23 pp)

    Article  ADS  Google Scholar 

  • Peierls R (1940) The size of a dislocation. Proc Phys Soc Lond 52:34–37

    Article  ADS  Google Scholar 

  • Pluchino PA, Chen X, Garcia M, Xiong L, McDowell DL, Chen Y (2016) Dislocation migration across coherent phase interfaces in SiGe superlattices. Comput Mater Sci 111:1–6

    Article  Google Scholar 

  • Qu S, Shastry V, Curtin WA, Miller RE (2005) A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model Simul Mater Sci Eng 13(7):1101–1118

    Article  ADS  Google Scholar 

  • Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49(17):3433–3441

    Article  Google Scholar 

  • Rao SI, Woodward C, Parthasarathy TA, Senkov O (2017) Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy. Acta Mater 134:188–194

    Article  Google Scholar 

  • Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater 58(4):1152–1211

    Google Scholar 

  • Roy A, Acharya A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics. J Mech Phys Solids 54:1711–1743

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Roy A, Puri S, Acharya A (2007) Phenomenological mesoscopic dislocation mechanics, lower-order gradient plasticity and transport of mean excess dislocation density. Model Simul Mater Sci Eng 15:S167–S180

    Article  ADS  Google Scholar 

  • Rudd RE, Arsenlis A, Barton NR, Cavallo RM, Comley AJ, Maddox BR, Marian J, Park H-S, Prisbrey ST, Wehrenberg CE, Zepeda-Ruiz L, Remington BA (2014) Multiscale strength (MS) models: their foundation, their successes, and their challenges. In: 18th APS-SCCM and 24th AIRAPT Journal of Physics: Conference Series 500, p 112055

    Google Scholar 

  • Ryu S, Kang K, Cai W (2011) Predicting the dislocation nucleation rate as a function of temperature and stress. J Mater Res 26(18):2335–2354

    Article  ADS  Google Scholar 

  • Ryu I, Nix WD, Cai W (2013) Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater 61:3233–3241

    Article  Google Scholar 

  • Sandfeld S, Hochrainer T, Zaiser M, Gumbsch P (2011) Continuum modeling of dislocation plasticity: theory, numerical implementation and validation by discrete dislocation simulations. J Mater Res 26:623–632

    Article  ADS  Google Scholar 

  • Saroukhani S, Nguyen LD, Leung KWK, Singh CV, Warner DH (2016) Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles. J Mech Phys Solids 90:203–214

    Article  ADS  MathSciNet  Google Scholar 

  • Shahba A, Ghosh S (2016) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule. Int J Plast 87:48–68

    Article  Google Scholar 

  • Shen C, Wang Y (2003) Modeling dislocation network and dislocation–precipitate interaction at mesoscopic scale using phase field method. Int J Multiscale Comput Eng 1(1):91–104

    Article  Google Scholar 

  • Shen C, Li J, Wang Y (2014) Predicting structure and energy of dislocations and grain boundaries. Acta Mater 74:125–131

    Article  Google Scholar 

  • Shenoy VB, Miller R, Tadmor EB, Phillips R, Ortiz M (1998) Quasicontinuum models of interfacial structure and deformation. Phys Rev Lett 80(4):742–745

    Article  ADS  Google Scholar 

  • Shenoy VB, Miller R, Tadmor E, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J Mech Phys Solids 47(3):611–642

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shiari B, Miller RE, Curtin WA (2005) Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. ASME J Eng Mater Technol 127(4):358–368

    Article  Google Scholar 

  • Shilkrot LE, Curtin WA, Miller RE (2002a) A coupled atomistic/continuum model of defects in solids. J Mech Phys Solids 50:2085–2106

    Article  ADS  MATH  Google Scholar 

  • Shilkrot LE, Miller RE, Curtin WA (2002b) Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett 89:025501–025501

    Article  ADS  Google Scholar 

  • Shilkrot LE, Miller RE, Curtin WA (2004) Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J Mech Phys Solids 52:755–787

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shimokawa T, Kinari T, Shintaku S (2007) Dislocation-grain boundary interactions by the Quasicontinuum method. Key Eng Mater 340–341:973–978

    Article  Google Scholar 

  • Sills RB, Aghaei A, Cai W (2016) Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model Simul Mater Sci Eng 24:045019 (17 pp)

    Article  ADS  Google Scholar 

  • Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Tadmor EB, Ortiz M, Phillips R (1996a) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Article  ADS  Google Scholar 

  • Tadmor EB, Phillips R, Ortiz M (1996b) Mixed atomistic and continuum models of deformation in solids. Langmuir 12(19):4529–4534

    Article  Google Scholar 

  • Tang M, Hommes G, Aubry S, Arsenlis A (2011) ParaDiS-FEM dislocation dynamics simulation code primer. LLNL-TR-501662. https://e-reports-ext.llnl.gov/pdf/519124.pdf. Accessed 21 June 2016

  • Tembhekar I, Amelang JS, Munk L, Kochmann DM (2017) Automatic adaptivity in the fully nonlocal quasicontinuum method for coarse-grained atomistic simulations. Int J Numer Methods Eng 110:878–900

    Article  MathSciNet  Google Scholar 

  • Van der Giessen E, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3:689–735

    Google Scholar 

  • Viatkina EM, Brekelmans WAM, Geers MGD (2007) Modelling of the internal stress in dislocation cell structures. Eur J Mech A Solids 26:982–998

    Article  MathSciNet  MATH  Google Scholar 

  • Voyiadjis GZ, Abu Al-Rub RK (2005) Gradient plasticity theory with a variable length scale parameter. Int J Solids Struct 42(14):3998–4029

    Article  MATH  Google Scholar 

  • Wallin M, Curtin WA, Ristinmaa M, Needleman A (2008) Multi-scale plasticity modeling: coupled discrete dislocation and continuum crystal plasticity. J Mech Phys Solids 56:3167–3180

    Article  ADS  MATH  Google Scholar 

  • Wang Y, Li J (2010) Phase field modeling of defects and deformation. Acta Mater 58(4):1212–1235

    Article  Google Scholar 

  • Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49(10):1847–1857

    Article  Google Scholar 

  • Wang W, Ghoniem N, Swaminaryan LSR (2006) A parallel algorithm for 3D dislocation dynamics. J Comput Phys 219:608–621

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Xia S, El-Azab A (2015) Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model Simul Mater Sci Eng 23(5):55009–55034

    Article  ADS  Google Scholar 

  • Xia S, Belak J, El-Azab A (2016) The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip. Modelling and Simulation in Materials Science and Engineering 24:075007 (22pp)

    Article  ADS  Google Scholar 

  • Xiong L, Tucker GJ, McDowell DL, Chen Y (2011) Coarse-grained atomistic simulation of dislocations. J Mech Phys Solids 59:160–177

    Article  ADS  MATH  Google Scholar 

  • Xiong L, Deng Q, Tucker GJ, McDowell DL, Chen Y (2012a) A concurrent scheme for passing dislocations from atomistic to continuum regions. Acta Mater 60(3):899–913

    Article  Google Scholar 

  • Xiong L, Deng Q, Tucker GJ, McDowell DL, Chen Y (2012b) Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int J Plast 38:86–101

    Article  Google Scholar 

  • Xiong L, McDowell DL, Chen Y (2014a) Sub-THz phonon drag on dislocations by coarse-grained atomistic simulations. Int J Plast 55:268–278

    Article  Google Scholar 

  • Xiong L, Chen X, McDowell DL, Chen Y (2014b) Predicting phonon properties of 1D polyatomic crystals through the concurrent atomistic-continuum simulations. Arch Appl Mech (special issue in honor of Professor G. Maugin) 84:1665–1675

    Google Scholar 

  • Xiong L, Xu S, McDowell DL, Chen Y (2015) Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals. Int J Plast 65:33–42

    Article  Google Scholar 

  • Xu S, Che R, Xiong L, Chen Y, McDowell DL (2015) A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int J Plast 72:91–126

    Article  Google Scholar 

  • Xu S, Xiong L, Chen Y, McDowell DL (2016) Sequential slip transfer of mixed character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study. npg Comput Mater 2:15016. https://doi.org/10.1038/npjcompumats.2015.16

  • Xu S, Xiong L, Chen Y, McDowell DL (2017) Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69(5):814–821

    Article  ADS  Google Scholar 

  • Yasin H, Zbib HM, Khaleel MA (2001) Size and boundary effects in discrete dislocation dynamics: coupling with continuum finite element. Mater Sci Eng A 309–310:294–299

    Article  Google Scholar 

  • Yin J, Barnett DM, Fitzgerald SP, Cai W (2012) Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions. Model Simul Mater Sci Eng 20:045015

    Article  ADS  Google Scholar 

  • Yu W, Wang Z (2012) Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundaries in copper: a quasi-continuum method study. Acta Mater 60(13–14):5010–5021

    Article  Google Scholar 

  • Yu WS, Wang ZQ (2014) Interactions between edge lattice dislocations and sigma 11 symmetrical tilt grain boundary: comparisons among several FCC metals and interatomic potentials. Philos Mag 94:2224–2246

    Article  ADS  Google Scholar 

  • Zaiser M (2001) Statistical modeling of dislocation systems. Mater Sci Eng A 309-310:304–315

    Article  Google Scholar 

  • Zbib HM, de la Rubia TD (2002) A multiscale model of plasticity. Int J Plast 18(9):1133–1163

    Article  MATH  Google Scholar 

  • Zbib HM, Rhee M, Hirth JP (1998) On plastic deformation and the dynamics of 3D dislocations. Int J Mech Sci 40(2):113–127

    Article  MATH  Google Scholar 

  • Zbib HM, de la Rubia TD, Bulatov V (2002) A multiscale model of plasticity based on discrete dislocation dynamics. ASME J Eng Mater Technol 124(1):78–87

    Article  Google Scholar 

  • Zbib HM, Overman CT, Akasheh F, Bahr D (2011) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 27:1618–1639

    Article  MATH  Google Scholar 

  • Zhang X (2015) Field dislocation mechanics with applications in atomic, mesoscopic and tectonic scale problems. Dissertations, Carnegie Mellon University Paper 585. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1624&context=dissertations

Download references

Acknowledgments

The author is grateful for the support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing at Georgia Tech, as well as prior support in pursuit of various aspects of metal plasticity from AFOSR, ONR, ARO, Eglin AFB, DARPA, NAVAIR, GE, Pratt & Whitney, Boeing, QuesTek, Simulia, the NSF-funded PSU-GT Center for Computational Materials Design (IIP-0541678, IIP-1034968), and NSF Grants CMMI-1232878, CMMI-0758265, CMMI-1030103, and CMMI-1333083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. McDowell .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McDowell, D.L. (2018). Connecting Lower and Higher Scales in Crystal Plasticity Modeling. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics