Nanofiber Technology: History and Developments

  • Ahmed Barhoum
  • Rahimeh Rasouli
  • Maryam Yousefzadeh
  • Hubert Rahier
  • Mikhael Bechelany
Living reference work entry


Nanofibers are defined as fibers with diameters on the order of 100 nm. Nanofibers have been considered one of the top interesting studied materials for academicians and one of the greatest intriguing materials for modern industry. Nanofibers provide great opportunities for creating products with new properties via various physical and chemical modifications during or following the production process. Nanofibers bring promising solutions for fundamental problems in our life in various fields such as energy, environmental, and medical treatments. Researchers have turned to the development of a number of nanofiber fabrication techniques such as electrospinning, template-assisted synthesis, melt-blowing, bicomponent spinning, force-spinning and flash-spinning, chemical vapor deposition, and physical vapor deposition. However, the electrospinning is the widely used technique to produce continuous nonwoven nanofiber mats. In this chapter, a brief introduction to nanoscience and nanotechnology was discussed, and then the history and development of nanofiber technologies and production techniques are presented. In the following, types and classifications of nanofibers based on their origin and morphologies and their unique properties are explained, and finally, some current applications and their future perspectives are discussed.


Nanofibers History Types Morphologies Technologies Emerging applications Markets 


  1. 1.
    Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346CrossRefGoogle Scholar
  2. 2.
    Akbarian S, Sojoodi J, Monnavari F, Heidari H, Khosravian P, Javar HA, Assadi A, Rasouli R, Saffari M, Shandiz SAS (2017) Nano Conjugated PLGA-Chlorambucil: Synthesis In Vitro Anti Non-Hodgkin’s Lymphoma Cellular Assay. Lett Drug Des Discov 14(7):827–836CrossRefGoogle Scholar
  3. 3.
    Hashempour Alamdari N, Alaei-Beirami M, Shandiz S, Ataollah S, Hejazinia H, Rasouli R, Saffari M, Sadat Ebrahimi SE, Assadi A, Shafiee Ardestani M (2017) Contrast Media Mol Imaging 2017:1–19Google Scholar
  4. 4.
    Kebriaezadeh A, Ashrafi S, Rasouli R, Ebrahimi SES, Hamedani MP, Assadi A, Saffari M, Ardestani MS (2016) Gadobutrol-dendrimer effects on metastatic and apoptotic gene expression. Adv Nano Res 4(2):145–156CrossRefGoogle Scholar
  5. 5.
    Ebrahimi SH, Rasouli R, Alavi SE, Akbarzadeh A, Koohi MEM (2015) Investigation of effective factors in preparation of polybutyl cyanoacrylate nanoparticles by emulsion polymerization. New cellular & molecular biotechnology journal 5:33–38Google Scholar
  6. 6.
    Rasouli R, Hosseinian Z, Azarnoosh A, Mortazavi M, Akbarzadeh A (2015) Evaluation of magnetic nanoparticles loaded with cisplatin performance on breast cancer in in vivo and in vitro studies. New cellular & molecular biotechnology journal 5:29–36Google Scholar
  7. 7.
    Sharma AK, Keservani RK, Kesharwani RK (2018) Nanobiomaterials: applications in drug delivery. CRC Press 1–528Google Scholar
  8. 8.
    Asiyanbola B, Soboyejo W (2008) For the surgeon: an introduction to nanotechnology. J Surg Educ 65(2):155–161CrossRefGoogle Scholar
  9. 9.
    Sheetz T, Vidal J, Pearson TD, Lozano K (2005) Nanotechnology: Awareness and societal concerns. Technol Soc 27(3):329–345CrossRefGoogle Scholar
  10. 10.
    Boudaıffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458):1658–1660CrossRefGoogle Scholar
  11. 11.
    Rosoff M (2001) Nano-surface chemistry. CRC PressGoogle Scholar
  12. 12.
    Standard A (2012) Standard Terminology Relating to NanotechnologyGoogle Scholar
  13. 13.
    Kumari N, Jha AK, Prasad K (2017) Fungal nanotechnology and biomedicine. In: Fungal nanotechnology. Springer, pp 207–233Google Scholar
  14. 14.
    Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann Manuf Technol 32(2):573–582CrossRefGoogle Scholar
  15. 15.
    Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36Google Scholar
  16. 16.
    Gilbert W, Wright E (1967) De magnete, magneticisque corporibus, et de magno magnete tellure: physiologia noua, plurimis & argumentis, & experimentis demonstrata. excudebat ShortGoogle Scholar
  17. 17.
    Cooley JF (1902) Apparatus for electrically dispersing fluids. In: Google PatentsGoogle Scholar
  18. 18.
    Tucker N, Stanger J, Staiger M, Razzaq H, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabr 7:63–73Google Scholar
  19. 19.
    Bose G-M (1744) Die Electricität nach ihrer Entdeckung und Fortgang mit poetischer Feder entworffen. Joh. Joachim Ahlfelden, WittenbergGoogle Scholar
  20. 20.
    Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 1(1):4–13CrossRefGoogle Scholar
  21. 21.
    Rayleigh L (1878) The influence of electricity on colliding water drops. Proc R Soc Lond 28:405–409CrossRefGoogle Scholar
  22. 22.
    Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71–97CrossRefGoogle Scholar
  23. 23.
    Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Lond Edinb Dublin Philos Mag J Sci 14:87Google Scholar
  24. 24.
    Kauffman GB (1993) Rayon: the first semi-synthetic fiber product. J Chem Educ 70(11):887CrossRefGoogle Scholar
  25. 25.
    Martin RS, Colombi A (1992) Am J Nephrol 12(3):196–198CrossRefGoogle Scholar
  26. 26.
    Boys CV (1887) On the production, properties, and some suggested uses of the finest threads. Proc Phys Soc Lond 9(1):8CrossRefGoogle Scholar
  27. 27.
    Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrostat 22(2):135–159CrossRefGoogle Scholar
  28. 28.
    Morton WJ (1902) Method of dispersing fluids. In: Google PatentsGoogle Scholar
  29. 29.
    Zeleny J (1907) The discharge of electricity from pointed conductors differing in size. Phys Rev Ser I 25(5):305Google Scholar
  30. 30.
    Burton E, Wiegand W (1912) Effect of electricity on streams of water drops, by EF Burton,… and WB Wiegand. University Library, TorontoGoogle Scholar
  31. 31.
    Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3(2):69CrossRefGoogle Scholar
  32. 32.
    Zeleny J (1915) On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points. Proc Camb Philos Soc 18:71Google Scholar
  33. 33.
    Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1CrossRefGoogle Scholar
  34. 34.
    Zeleny J (1920) Electrical discharges from pointed conductors. Phys Rev 16(2):102CrossRefGoogle Scholar
  35. 35.
    Macky W (1931) Some investigations on the deformation and breaking of water drops in strong electric fields. Proc R Soc Lond Ser A Contain Pap Math Phys Character 133(822):565–587CrossRefGoogle Scholar
  36. 36.
    Anton F (1934) Process and apparatus for preparing artificial threads. In: Google PatentsGoogle Scholar
  37. 37.
    Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493CrossRefGoogle Scholar
  38. 38.
    Tucker N, Hofman K, Tazzaq H. A History of Electrospinning 1600–1995. GB-06385Google Scholar
  39. 39.
    English W (1948) Corona from a water drop. Phys Rev 74(2):179CrossRefGoogle Scholar
  40. 40.
    Guan B, Cole RB (2016) The background to electrospray. In: The encyclopedia of mass spectrometry. Elsevier, pp 132–140CrossRefGoogle Scholar
  41. 41.
    Mostofizadeh A, Li Y, Song B, Huang Y (2011) Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J Nanomater 2011:16CrossRefGoogle Scholar
  42. 42.
    Feynman RP (1959) There’s plenty of room at the bottom. Miniaturization. pp 282–296Google Scholar
  43. 43.
    Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A Math Phys Eng Sci 383–397. The Royal SocietyCrossRefGoogle Scholar
  44. 44.
    Taylor G (1966) The force exerted by an electric field on a long cylindrical conductor. Proc R Soc Lond A Math Phys Eng Sci 145–158. The Royal SocietyCrossRefGoogle Scholar
  45. 45.
    Taylor G (1969) Electrically driven jets. Proc R Soc Lond A Math Phys Eng Sci 453–475. The Royal SocietyCrossRefGoogle Scholar
  46. 46.
    Melcher J, Taylor G (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1(1):111–146CrossRefGoogle Scholar
  47. 47.
    Simons HL (1966) Process and apparatus for producing patterned non-woven fabrics. In: Google PatentsGoogle Scholar
  48. 48.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349CrossRefGoogle Scholar
  49. 49.
    Martin GE, Cockshott ID (1977) Fibrillar product of electrostatically spun organic material. In: Google PatentsGoogle Scholar
  50. 50.
    Annis D, Bornat A, Edwards R, Higham A, Loveday B, Wilson J (1978) An elastomeric vascular prosthesis. ASAIO J 24(1):209–214Google Scholar
  51. 51.
    Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci B Polym Phys 19(6):909–920CrossRefGoogle Scholar
  52. 52.
    Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci B Polym Phys 19(6):921–932CrossRefGoogle Scholar
  53. 53.
    Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci B Polym Phys 19(6):933–940CrossRefGoogle Scholar
  54. 54.
    Tennent HG (1987) Carbon fibrils, method for producing same and compositions containing same. In: Google PatentsGoogle Scholar
  55. 55.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56CrossRefGoogle Scholar
  56. 56.
    McEuen PL (2000) Single-wall carbon nanotubes. Phys World 13(6):31CrossRefGoogle Scholar
  57. 57.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35(2–3):151–160CrossRefGoogle Scholar
  58. 58.
    Wang Y, Serrano S, Santiago-Aviles JJ (2001) Electrostatic Synthesis and Characterization of Pb (Zr x Ti 1-x) O 3 Micro/nano-fibers. MRS Online Proc Libr Arch 702Google Scholar
  59. 59.
    Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932CrossRefGoogle Scholar
  60. 60.
    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  61. 61.
    Smit E, Bűttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46(8):2419–2423CrossRefGoogle Scholar
  62. 62.
    Ramakrishna S, Fujihara K, Teo W, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. World Scientific Publishing Company, SingapuraGoogle Scholar
  63. 63.
    Suzuki A, Aoki K (2008) Biodegradable poly (l-lactic acid) nanofiber prepared by a carbon dioxide laser supersonic drawing. Eur Polym J 44(8):2499–2505CrossRefGoogle Scholar
  64. 64.
    Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LH (2009) Solution blow spinning: A new method to produce micro‐and nanofibers from polymer solutions. J Appl Polym Sci 113(4):2322–2330CrossRefGoogle Scholar
  65. 65.
    Badrossamay MR, McIlwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261CrossRefGoogle Scholar
  66. 66.
    Weitz R, Harnau L, Rauschenbach S, Burghard M, Kern K (2008) Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett 8(4):1187–1191CrossRefGoogle Scholar
  67. 67.
    Bajakova J, Chaloupek J, Lukáš D, Lacarin M (2011) Drawing–the production of individual nanofibers by experimental method. In: Proceedings of the 3rd international conference on nanotechnology-smart materials (NANOCON’11), 2011Google Scholar
  68. 68.
    Tao SL, Desai TA (2007) Aligned arrays of biodegradable poly (ɛ-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett 7(6):1463–1468CrossRefGoogle Scholar
  69. 69.
    Paramonov SE, Jun H-W, Hartgerink JD (2006) Self-assembly of peptide– amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128(22):7291–7298CrossRefGoogle Scholar
  70. 70.
    Ma H, Chen G, Zhang J, Liu Y, Nie J, Ma G (2017) Facile fabrication of core-shell polyelectrolyte complexes nanofibers based on electric field induced phase separation. Polymer 110:80–86CrossRefGoogle Scholar
  71. 71.
    Lin J, Xu L, Huang Y, Li J, Wang W, Feng C, Liu Z, Xu X, Zou J, Tang C (2016) Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties. RSC Adv 6(2):1253–1259CrossRefGoogle Scholar
  72. 72.
    Jin Y, Jia M (2014) Preparation and electrochemical capacitive performance of polyaniline nanofiber-graphene oxide hybrids by oil–water interfacial polymerization. Synth Met 189:47–52CrossRefGoogle Scholar
  73. 73.
    Kim GH, Nam H, Choi W, An T, Lim G (2018) Electrospinning Nanofiber on an Insulating Surface with a Patterned Functional Electrolyte Electrode. Adv Mater InterfacesGoogle Scholar
  74. 74.
    Huang Y, Bu N, Duan Y, Pan Y, Liu H, Yin Z, Xiong Y (2013) Electrohydrodynamic direct-writing. Nanoscale 5(24):12007–12017CrossRefGoogle Scholar
  75. 75.
    Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89CrossRefGoogle Scholar
  76. 76.
    Zhou Y, He J, Wang H, Qi K, Cui S (2017) Continuous nanofiber coated hybrid yarn produced by multi-nozzle air jet electrospinning. J Text Inst 108(5):783–787CrossRefGoogle Scholar
  77. 77.
    Wang P, Liu P, Kong H-Y, Zhang Y, He J-H (2017) Nonlinear vibration mechanism for fabrication of crimped nanofibers with bubble electrospinning and stuffer box crimping method. Text Res J 87(14):1706–1710CrossRefGoogle Scholar
  78. 78.
    Varabhas J, Chase GG, Reneker D (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49(19):4226–4229CrossRefGoogle Scholar
  79. 79.
    Zhou X-h, Li L, Li Z-h, Fan L-l, Kang W-m, Cheng B-w (2017) The preparation of continuous CeO2/CuO/Al2O3 ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic activity. J Mater Sci Mater Electron 1–11Google Scholar
  80. 80.
    Zhmayev E, Cho D, Joo YL (2010) Nanofibers from gas-assisted polymer melt electrospinning. Polymer 51(18):4140–4144CrossRefGoogle Scholar
  81. 81.
    Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2):237–243CrossRefGoogle Scholar
  82. 82.
    Wang X, Zhang K, Zhu M, Yu H, Zhou Z, Chen Y, Hsiao BS (2008) Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer 49(11):2755–2761CrossRefGoogle Scholar
  83. 83.
    El-Newehy MH, Al-Deyab SS, Kenawy E-R, Abdel-Megeed A (2012) Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fibers Polym 13(6):709–717CrossRefGoogle Scholar
  84. 84.
    Sahay R, Thavasi V, Ramakrishna S (2011) Design modifications in electrospinning setup for advanced applications. J Nanomater 2011:17CrossRefGoogle Scholar
  85. 85.
    De Vrieze S, De Schoenmaker B, Ceylan Ö, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K (2011) Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 119(5):2984–2990CrossRefGoogle Scholar
  86. 86.
    Daelemans L, van der Heijden S, De Baere I, Rahier H, Van Paepegem W, De Clerck K (2016) Damage-resistant composites using electrospun nanofibers: a multiscale analysis of the toughening mechanisms. ACS Appl Mater Interfaces 8(18):11806–11818CrossRefGoogle Scholar
  87. 87.
    De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47(9):4118–4126CrossRefGoogle Scholar
  88. 88.
    Steyaert I, Rahier H, De Clerck K (2015) Nanofibre-based sensors for visual and optical monitoring. In: Electrospinning for high performance sensors. Springer, pp 157–177Google Scholar
  89. 89.
    Steyaert I, Rahier H, Van Vlierberghe S, Olijve J, De Clerck K (2016) Gelatin nanofibers: Analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocoll 57:200–208CrossRefGoogle Scholar
  90. 90.
    van der Heijden S, De Schoenmaker B, Rahier H, Van Assche G, De Clerck K (2014) The effect of the moisture content on the curing characteristics of an epoxy matrix in the presence of nanofibrous structures. Polym Test 40:265–272CrossRefGoogle Scholar
  91. 91.
    Steyaert I, Van der Schueren L, Rahier H, De Clerck K (2012) An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromol Symp 321–322:71–75. Wiley Online LibraryCrossRefGoogle Scholar
  92. 92.
    Daniele MA, Boyd DA, Adams AA, Ligler FS (2015) Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 4(1):11–28CrossRefGoogle Scholar
  93. 93.
    Guarino V, Bonadies I, Ambrosio L (2018) Fabrication of nanofibers and nanotubes for tissue regeneration and repair. In: Peptides and proteins as biomaterials for tissue regeneration and repair. Elsevier, pp 205–228CrossRefGoogle Scholar
  94. 94.
    Karczewski A, Feitosa SA, Hamer EI, Pankajakshan D, Gregory RL, Spolnik KJ, Bottino MC (2018) Clindamycin-modified Triple Antibiotic Nanofibers: A Stain-free Antimicrobial Intracanal Drug Delivery System. J Endod 44(1):155–162CrossRefGoogle Scholar
  95. 95.
    Ozkizilcik A, Williams R, Tian ZR, Muresanu DF, Sharma A, Sharma HS (2018) Synthesis of biocompatible titanate nanofibers for effective delivery of neuroprotective agents. In: Neurotrophic factors. Springer, pp 433–442Google Scholar
  96. 96.
    Terra IA, Sanfelice RC, Valente GT, Correa DS (2018) Optical sensor based on fluorescent PMMA/PFO electrospun nanofibers for monitoring volatile organic compounds. J Appl Polym SciGoogle Scholar
  97. 97.
    Jha RK, Wan M, Jacob C, Guha PK (2018) Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS 2 nanosheet composites. New J ChemGoogle Scholar
  98. 98.
    Liu L, Wang Z, Yang J, Liu G, Li J, Guo L, Chen S, Guo Q (2018) NiCo 2 O 4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens Actuators B Chem 258:920–928CrossRefGoogle Scholar
  99. 99.
    Yuriar-Arredondo K, Armstrong MR, Shan B, Zeng W, Xu W, Jiang H, Mu B (2018) Nanofiber-based Matrimid organogel membranes for battery separator. J Membr Sci 546:158–164CrossRefGoogle Scholar
  100. 100.
    Kang W, Fan L, Deng N, Zhao H, Li Q, Naebe M, Yan J, Cheng B (2018) Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem Eng J 333:185–190CrossRefGoogle Scholar
  101. 101.
    Song X, Wang S, Chen G, Gao T, Bao Y, Ding L-X, Wang H (2018) Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem Eng J 333:564–571CrossRefGoogle Scholar
  102. 102.
    Kim MH, Lee WJ, Lee DH, Ko SW, Hwang TI, Kim JW, Park CH, Kim CS (2018) Development of Nanofiber Reinforced Double Layered Cabin Air Filter Using Novel Upward Mass Production Electrospinning Set Up. J Nanosci Nanotechnol 18(3):2132–2136CrossRefGoogle Scholar
  103. 103.
    Choi H-J, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, Tsai C-J, Otani Y (2018) Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance. Aerosol Air Qual Res 17(4):1052–1062CrossRefGoogle Scholar
  104. 104.
    Feng Q, Wu D, Zhao Y, Wei A, Wei Q, Fong H (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344:819–828CrossRefGoogle Scholar
  105. 105.
    Din IU, Shaharun MS, Naeem A, Tasleem S, Johan MR (2018) Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration. Chem Eng J 334:619–629CrossRefGoogle Scholar
  106. 106.
    Gupta VK, Fakhri A, Agarwal S, Bharti AK, Naji M, Tkachev AG (2018) Preparation and characterization of TiO 2 nanofibers by hydrothermal method for removal of Benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes. J Mol Liq 249:1033–1038CrossRefGoogle Scholar
  107. 107.
    Knizek R, Knizkova D, Bajzik V (2018) Baby Bed Sheets with a Nanofiber Membrane. World Academy of Science, Engineering and Technology, International Journal of Fashion and Textile Engineering 5(6)Google Scholar
  108. 108.
    Lee KS, Shim J, Park M, Kim HY, Son DI (2017) Transparent nanofiber textiles with intercalated ZnO@ graphene QD LEDs for wearable electronics. Compos Part B Eng 130:70–75CrossRefGoogle Scholar
  109. 109.
    Gorji M, Bagherzadeh R, Fashandi H (2017) Electrospun nanofibers in protective clothing. In: Electrospun nanofibers. Elsevier, pp 571–598CrossRefGoogle Scholar
  110. 110.
    Sinha MK, Das B, Kumar K, Kishore B, Prasad NE (2017) Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique. J Inst Eng (India) Ser E 1–8Google Scholar
  111. 111.
    Lu AX, McEntee M, Browe MA, Hall MG, DeCoste JB, Peterson GW (2017) MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH2 for Chemical Protection and Decontamination. ACS Appl Mater Interfaces 9(15):13632–13636CrossRefGoogle Scholar
  112. 112.
    Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRefGoogle Scholar
  113. 113.
    Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803CrossRefGoogle Scholar
  114. 114.
    Pokropivny V, Skorokhod V (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27(5):990–993CrossRefGoogle Scholar
  115. 115.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4):MR17–MR71CrossRefGoogle Scholar
  116. 116.
    Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945CrossRefGoogle Scholar
  117. 117.
    Cheng H-Y, Zhu Y-A, Sui Z-J, Zhou X-G, Chen D (2012) Modeling of fishbone-type carbon nanofibers with cone-helix structures. Carbon 50(12):4359–4372CrossRefGoogle Scholar
  118. 118.
    Hughes T, Chambers C (1889) US Patent 405, 480. Manufacture of carbon filamentsGoogle Scholar
  119. 119.
    Li W, Li M, Adair KR, Sun X, Yu Y (2017) Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A 5(27):13882–13906CrossRefGoogle Scholar
  120. 120.
    Lobo LS (2017) Nucleation and growth of carbon nanotubes and nanofibers: mechanism and catalytic geometry control. Carbon 114:411–417CrossRefGoogle Scholar
  121. 121.
    Lai C, Guo Q, Wu X-F, Reneker DH, Hou H (2008) Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles. Nanotechnology 19(19):195303CrossRefGoogle Scholar
  122. 122.
    An G-H, Lee E-H, Ahn H-J (2016) Well-dispersed iron nanoparticles exposed within nitrogen-doped mesoporous carbon nanofibers by hydrogen-activation for oxygen-reduction reaction. J Alloys Compd 682:746–752CrossRefGoogle Scholar
  123. 123.
    Yu C, Saha S, Zhou J, Shi L, Cassell AM, Cruden BA, Ngo Q, Li J (2006) Thermal contact resistance and thermal conductivity of a carbon nanofiber. J Heat Transf 128(3):234–239CrossRefGoogle Scholar
  124. 124.
    Huang Y, Miao Y-E, Tjiu WW, Liu T (2015) High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co 3 O 4/MnO 2 hybrid electrodes. RSC Adv 5(24):18952–18959CrossRefGoogle Scholar
  125. 125.
    Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95(4):1208–1212CrossRefGoogle Scholar
  126. 126.
    Nakane K, Ogata N (2010) Photocatalyst nanofibers obtained by calcination of organic-inorganic hybrids. In: Nanofibers. InTechGoogle Scholar
  127. 127.
    Moon J, Park J-A, Lee S-J, Zyung T, Kim I-D (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305CrossRefGoogle Scholar
  128. 128.
    Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12):1861CrossRefGoogle Scholar
  129. 129.
    Yamamoto K, Otsuka H, Takahara A, Wada S-I (2002) Preparation of a novel (polymer/inorganic nanofiber) composite through surface modification of natural aluminosilicate nanofiber. J Adhes 78(7):591–602CrossRefGoogle Scholar
  130. 130.
    Shi H, Yu Y, Zhang Y, Feng X, Zhao X, Tan H, Khan SU, Li Y, Wang E (2018) Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl Catal B Environ 221:280–289CrossRefGoogle Scholar
  131. 131.
    Ding B, Kim CK, Kim HY, Seo MK, Park S (2004) Titanium dioxide nanofibers prepared by using electrospinning method. J Fibers Polym 5(2):105–109CrossRefGoogle Scholar
  132. 132.
    Wang ZL, Gao RP, Gole JL, Stout JD (2000) Silica nanotubes and nanofiber arrays. Adv Mater 12(24):1938–1940CrossRefGoogle Scholar
  133. 133.
    Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR (2003) The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology 15(3):320CrossRefGoogle Scholar
  134. 134.
    Kim C, Noh M, Choi M, Cho J, Park B (2005) Critical size of a nano SnO2 electrode for Li-secondary battery. Chem Mater 17(12):3297–3301CrossRefGoogle Scholar
  135. 135.
    Zhu HY, Riches JD, Barry JC (2002) γ-alumina nanofibers prepared from aluminum hydrate with poly (ethylene oxide) surfactant. Chem Mater 14(5):2086–2093CrossRefGoogle Scholar
  136. 136.
    Mondal K, Sharma A (2016) Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv 6(97):94595–94616CrossRefGoogle Scholar
  137. 137.
    Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater 16(1):122Google Scholar
  138. 138.
    Vahtrus M, Šutka A, Vlassov S, Šutka A, Polyakov B, Saar R, Dorogin L, Lõhmus R (2015) Mechanical characterization of TiO 2 nanofibers produced by different electrospinning techniques. Mater Charact 100:98–103CrossRefGoogle Scholar
  139. 139.
    Shendokar S, Kelkar A, Mohan R, Bolick R, Chandekar G (2008) Effect of sintering temperature on mechanical properties of electrospun silica nanofibers. ASME, IMECE 2008Google Scholar
  140. 140.
    Chen J, Liao X, Wang M, Liu Z, Zhang J, Ding L, Gao L, Li Y (2015) Highly flexible, nonflammable and free-standing SiC nanowire paper. Nanoscale 7(14):6374–6379CrossRefGoogle Scholar
  141. 141.
    Biswas A, Park H, Sigmund WM (2012) Flexible ceramic nanofibermat electrospun from TiO 2–SiO 2 aqueous sol. Ceram Int 38(1):883–886CrossRefGoogle Scholar
  142. 142.
    Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802CrossRefGoogle Scholar
  143. 143.
    Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3(4):555–560CrossRefGoogle Scholar
  144. 144.
    Wang H, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C, Liu Z, Fang M, Ou G (2017) Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci Adv 3(6):e1603170CrossRefGoogle Scholar
  145. 145.
    Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci B Polym Phys 39(21):2598–2606CrossRefGoogle Scholar
  146. 146.
    Zander NE (2013) Hierarchically structured electrospun fibers. Polymers 5(1):19–44CrossRefGoogle Scholar
  147. 147.
    Choe K, Kim KJ, Kim D, Manford C, Heo S, Shahinpoor M (2006) Performance Characteristics of Electro–chemically Driven Polyacrylonitrile Fiber Bundle Actuators. J Intell Mater Syst Struct 17(7):563–576CrossRefGoogle Scholar
  148. 148.
    Chuysinuan P, Techasakul S, Suksamrarn S, Wetprasit N, Hongmanee P, Supaphol P (2017) Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana. Polym Bull 1–17Google Scholar
  149. 149.
    Zhao R, Li X, Sun B, Ji H, Wang C (2017) Diethylenetriamine-assisted synthesis of amino-rich hydrothermal carbon-coated electrospun polyacrylonitrile fiber adsorbents for the removal of Cr (VI) and 2, 4-dichlorophenoxyacetic acid. J Colloid Interface Sci 487:297–309CrossRefGoogle Scholar
  150. 150.
    Zhao R, Li X, Sun B, Li Y, Li Y, Yang R, Wang C (2017) Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: a novel and effective adsorbent for Cr (VI) remediation in wastewater. J Mater Chem A 5(3):1133–1144CrossRefGoogle Scholar
  151. 151.
    Afshari M (2016) Electrospun nanofibers. Woodhead PublishingGoogle Scholar
  152. 152.
    Jiang T, Carbone EJ, Lo KW-H, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24CrossRefGoogle Scholar
  153. 153.
    Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971CrossRefGoogle Scholar
  154. 154.
    Lee C, Jo SM, Choi J, Baek K-Y, Truong YB, Kyratzis IL, Shul Y-G (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48(10):3665–3671CrossRefGoogle Scholar
  155. 155.
    Guo L, Bai J, Li C, Meng Q, Liang H, Sun W, Li H, Liu H (2013) A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis. Appl Surf Sci 283:107–114CrossRefGoogle Scholar
  156. 156.
    Ji L, Zhang X (2010) Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy Environ Sci 3(1):124–129CrossRefGoogle Scholar
  157. 157.
    Jeong I, Lee J, Joseph KV, Lee HI, Kim JK, Yoon S, Lee J (2014) Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9:392–400CrossRefGoogle Scholar
  158. 158.
    Li Y, Gong J, He G, Deng Y (2011) Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Mater Chem Phys 129(1):477–482CrossRefGoogle Scholar
  159. 159.
    Mahmoudifard M, Shoushtari AM, Mohsenifar A (2011) Novel approach toward optical sensors based on electrospun nanofibers â quantum dot composits. DE REDACfiIEGoogle Scholar
  160. 160.
    Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, Abdul Rahman N (2017) Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis. Sensors 17(12):2789CrossRefGoogle Scholar
  161. 161.
    Lei X, Rui W, Qi X, Dan Z, Yong L (2011) Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chin Phys Lett 28(7):070702CrossRefGoogle Scholar
  162. 162.
    Haider A, Gupta KC, Kang I-K (2014) Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. Biomed Res Int 2014Google Scholar
  163. 163.
    Cui Z, Zheng Z, Lin L, Si J, Wang Q, Peng X, Chen W (2017) Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv Polym TechnolGoogle Scholar
  164. 164.
    Rijal NP, Adhikari U, Khanal S, Pai D, Sankar J, Bhattarai N (2018) Magnesium oxide-poly (ɛ-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater Sci Eng B 228:18–27CrossRefGoogle Scholar
  165. 165.
    Kwon G-W, Gupta KC, Jung K-H, Kang I-K (2017) Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering. Biomater Res 21(1):11CrossRefGoogle Scholar
  166. 166.
    Pant HR, Kim HJ, Joshi MK, Pant B, Park CH, Kim JI, Hui K, Kim CS (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33CrossRefGoogle Scholar
  167. 167.
    Homaeigohar S, Elbahri M (2014) Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 7(2):1017–1045CrossRefGoogle Scholar
  168. 168.
    Low K, Chartuprayoon N, Echeverria C, Li C, Bosze W, Myung NV, Nam J (2014) Polyaniline/poly (ɛ-caprolactone) composite electrospun nanofiber-based gas sensors: optimization of sensing properties by dopants and doping concentration. Nanotechnology 25(11):115501CrossRefGoogle Scholar
  169. 169.
    Sawicka KM, Gouma P (2006) Electrospun composite nanofibers for functional applications. J Nanopart Res 8(6):769–781CrossRefGoogle Scholar
  170. 170.
    Wang N, Chen H, Lin L, Zhao Y, Cao X, Song Y, Jiang L (2010) Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning. Macromol Rapid Commun 31(18):1622–1627CrossRefGoogle Scholar
  171. 171.
    Wang Y, Qiao W, Wang B, Zhang Y, Shao P, Yin T (2011) Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polym J 43(5):478–483CrossRefGoogle Scholar
  172. 172.
    Pai C-L, Boyce MC, Rutledge GC (2009) Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules 42(6):2102–2114CrossRefGoogle Scholar
  173. 173.
    Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6(5):510–530CrossRefGoogle Scholar
  174. 174.
    Gordon JE (1991) The new science of strong materials: or why you don’t fall through the floor. Penguin, LondonGoogle Scholar
  175. 175.
    Dresselhaus MS, Dresselhaus G, Eklund P, Rao A (2000) Carbon nanotubes. In: The physics of fullerene-based and fullerene-related materials. Springer, pp 331–379Google Scholar
  176. 176.
    Kulpreechanan N, Bunaprasert T, Damrongsakkul S, Kanokpanont S, Rangkupan R (2013) Effect of polycaprolactone electrospun fiber size on L929 cell behavior. Adv Mater Res 701:420–424. Trans Tech PublicationsCrossRefGoogle Scholar
  177. 177.
    McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2(1):19–28CrossRefGoogle Scholar
  178. 178.
    Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li W-J, Tuan RS, Elliott DM (2009) Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev 15(2):171–193CrossRefGoogle Scholar
  179. 179.
    Eichhorn S, Sampson W (2010) Relationships between specific surface area and pore size in electrospun polymer fibre networks. J R Soc Interface 7(45):641–649CrossRefGoogle Scholar
  180. 180.
    Norris ID, Shaker MM, Ko FK, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114(2):109–114CrossRefGoogle Scholar
  181. 181.
    Yousefzadeh M, Latifi M, Amani-Tehran M, Teo W-E, Ramakrishna S (2012) A Note on the 3D Structural Design of Electrospun Nanofibers. J Eng Fabr Fibers 7(2)Google Scholar
  182. 182.
    Yousefzadeh M, Latifi M, Teo WE, Amani-Tehran M, Ramakrishna S (2011) Producing continuous twisted yarn from well-aligned nanofibers by water vortex. Polym Eng Sci 51(2):323–329CrossRefGoogle Scholar
  183. 183.
    Pierini F, Lanzi M, Nakielski P, Pawłowska S, Urbanek O, Zembrzycki K, Kowalewski TA (2017) Single-material organic solar cells based on electrospun fullerene-grafted polythiophene nanofibers. Macromolecules 50(13):4972–4981CrossRefGoogle Scholar
  184. 184.
    Skupov KM, Ponomarev II, Razorenov DY, Zhigalina VG, Zhigalina OM, Ponomarev II, Volkova YA, Volfkovich YM, Sosenkin VE (2017) Carbon nanofiber paper electrodes based on heterocyclic polymers for high temperature polymer electrolyte membrane fuel cell. Macromol Symp. Wiley Online LibraryCrossRefGoogle Scholar
  185. 185.
    Sebastián D, Calderón J, González-Expósito J, Pastor E, Martínez-Huerta M, Suelves I, Moliner R, Lázaro M (2010) Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. Int J Hydrogen Energy 35(18):9934–9942CrossRefGoogle Scholar
  186. 186.
    Lai F, Huang Y, Zuo L, Gu H, Miao Y-E, Liu T (2016) Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. J Mater Chem A 4(41):15861–15869CrossRefGoogle Scholar
  187. 187.
    Yu T, Lin B, Li Q, Wang X, Qu W, Zhang S, Deng C (2016) First exploration of freestanding and flexible Na 2+ 2x Fe 2− x (SO 4) 3@ porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries. Phys Chem Chem Phys 18(38):26933–26941CrossRefGoogle Scholar
  188. 188.
    Iqbal N, Wang X, Babar AA, Zainab G, Yu J, Ding B (2017) Flexible Fe 3 O 4@ Carbon Nanofibers Hierarchically Assembled with MnO 2 Particles for High-Performance Supercapacitor Electrodes. Sci Rep 7(1):15153CrossRefGoogle Scholar
  189. 189.
    Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S (2014) Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci 7(10):3192–3222CrossRefGoogle Scholar
  190. 190.
    Li B, Zhang F, Guan S, Zheng J, Xu C (2016) Wearable piezoelectric device assembled by one-step continuous electrospinning. J Mater Chem C 4(29):6988–6995CrossRefGoogle Scholar
  191. 191.
    Lupan O, Guérin V, Ghimpu L, Tiginyanu I, Pauporté T (2012) Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chem Phys Lett 550:125–129CrossRefGoogle Scholar
  192. 192.
    Jung H-Y, Roh S-H (2017) Carbon Nanofiber/Polypyrrole Nanocomposite as Anode Material in Microbial Fuel Cells. J Nanosci Nanotechnol 17(8):5830–5833CrossRefGoogle Scholar
  193. 193.
    Liu J, Yuan H, Qiao J, Feng J, Xu C, Wang Z, Sun W, Sun K (2017) Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. J Mater Chem A 5(33):17216–17220CrossRefGoogle Scholar
  194. 194.
    Persano L, Camposeo A, Pisignano D (2015) Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog Polym Sci 43:48–95CrossRefGoogle Scholar
  195. 195.
    Sood R, Cavaliere S, Jones DJ, Rozière J (2016) Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy 26:729–745CrossRefGoogle Scholar
  196. 196.
    Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334CrossRefGoogle Scholar
  197. 197.
    Gao H, Yang Y, Akampumuza O, Hou J, Zhang H, Qin X (2017) A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM 2.5 capture. Environ Sci Nano 4(4):864–875CrossRefGoogle Scholar
  198. 198.
    Tang M, Hu J, Liang Y, Pui DY (2017) Pressure drop, penetration and quality factor of filter paper containing nanofibers. Text Res J 87(4):498–508CrossRefGoogle Scholar
  199. 199.
    Sundarrajan S, Tan KL, Lim SH, Ramakrishna S (2014) Electrospun nanofibers for air filtration applications. Procedia Eng 75:159–163CrossRefGoogle Scholar
  200. 200.
    Liu C, Hsu P-C, Lee H-W, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high-efficiency PM 2.5 capture. Nat Commun 6:6205CrossRefGoogle Scholar
  201. 201.
    Li J-J, Zhou Y-N, Luo Z-H (2015) Smart fiber membrane for pH-induced oil/water separation. ACS Appl Mater Interfaces 7(35):19643–19650CrossRefGoogle Scholar
  202. 202.
    Park J-A, Kim S-B (2017) Antimicrobial filtration with electrospun poly (vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: Immersion, leaching, toxicity, and filtration tests. Chemosphere 167:469–477CrossRefGoogle Scholar
  203. 203.
    Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56CrossRefGoogle Scholar
  204. 204.
    Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6(3):1484–1488CrossRefGoogle Scholar
  205. 205.
    Neuberg P, Hamaidi I, Danilin S, Ripoll M, Lindner V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy J-S (2018) Polydiacetylenic Nanofibers as new siRNA vehicles for in vitro and in vivo delivery. NanoscaleGoogle Scholar
  206. 206.
    Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y, Yuan X (2018) Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. Mater Sci Eng C 85:37–46CrossRefGoogle Scholar
  207. 207.
    Wang Z, Shen H, Song S, Zhang L, Chen W, Dai J, Zhang Z (2018) Graphene Oxide Incorporated PLGA Nanofibrous Scaffold for Solid Phase Gene Delivery into Mesenchymal Stem Cells. J Nanosci Nanotechnol 18(4):2286–2293CrossRefGoogle Scholar
  208. 208.
    Xu W, Yang W, Yang Y (2009) Electrospun starch acetate nanofibers: Development, properties, and potential application in drug delivery. Biotechnol Prog 25(6):1788–1795Google Scholar
  209. 209.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042CrossRefGoogle Scholar
  210. 210.
    Chen DW, Hsu Y-H, Liao J-Y, Liu S-J, Chen J-K, Ueng SW-N (2012) Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm 430(1):335–341CrossRefGoogle Scholar
  211. 211.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412CrossRefGoogle Scholar
  212. 212.
    Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16(10):933–946CrossRefGoogle Scholar
  213. 213.
    Kamble P, Sadarani B, Majumdar A, Bhullar S (2017) Nanofiber based drug delivery systems for skin: A promising therapeutic approach. J Drug Deliv Sci Technol 41:124–133CrossRefGoogle Scholar
  214. 214.
    He C, Nie W, Feng W (2014) Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B 2(45):7828–7848CrossRefGoogle Scholar
  215. 215.
    Sebe I, Szabó P, Kállai-Szabó B, Zelkó R (2015) Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int J Pharm 494(1):516–530CrossRefGoogle Scholar
  216. 216.
    Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11(1):014108CrossRefGoogle Scholar
  217. 217.
    Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL (2011) Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy 27(12):1706–1719CrossRefGoogle Scholar
  218. 218.
    Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212CrossRefGoogle Scholar
  219. 219.
    Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29(5):587–596CrossRefGoogle Scholar
  220. 220.
    Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241CrossRefGoogle Scholar
  221. 221.
    Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64(12):1129–1141CrossRefGoogle Scholar
  222. 222.
    Cai YZ, Zhang GR, Wang LL, Jiang YZ, Ouyang HW, Zou XH (2012) J Biomed Mater Res A 100(5):1187–1194CrossRefGoogle Scholar
  223. 223.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703CrossRefGoogle Scholar
  224. 224.
    Vargas ET, do Vale Baracho N, De Brito J, De Queiroz A (2010) Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 6(3):1069–1078CrossRefGoogle Scholar
  225. 225.
    Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679CrossRefGoogle Scholar
  226. 226.
    Fan L, Wang H, Zhang K, Cai Z, He C, Sheng X, Mo X (2012) Vitamin C-reinforcing silk fibroin nanofibrous matrices for skin care application. RSC Adv 2(10):4110–4119CrossRefGoogle Scholar
  227. 227.
    Choi JS, Choi SH, Yoo HS (2011) Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem 21(14):5258–5267CrossRefGoogle Scholar
  228. 228.
    Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. NanomedicineCrossRefGoogle Scholar
  229. 229.
    Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95Google Scholar
  230. 230.
    Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly (vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed Barhoum
    • 1
    • 2
  • Rahimeh Rasouli
    • 3
  • Maryam Yousefzadeh
    • 4
  • Hubert Rahier
    • 1
  • Mikhael Bechelany
    • 5
  1. 1.Department of Materials and Chemistry, Faculty of EngineeringVrije Universiteit BrusselBrusselsBelgium
  2. 2.Chemistry Department, Faculty of ScienceHelwan UniversityHelwan, CairoEgypt
  3. 3.Department of Medical Nanotechnology, International CampusTehran University of Medical SciencesTehranIran
  4. 4.Textile Engineering DepartmentAmirkabir University of TechnologyTehranIran
  5. 5.Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRS, University of MontpellierMontpellierFrance

Personalised recommendations