Skip to main content

Carbon-Based Nanofibers: Fullerenes, Diamond, and Carbon Nanostructures

  • Living reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Carbon nanofiber (CNF) has been found as a promising member of carbon fibers which draw much attention of fundamental scientific researcher. CNF composites have wider applications and promising materials of future in many fields, such as electrical devices, electrode materials for batteries and supercapacitors, and as sensors. The electrical property of CNF composites largely counts on the dispersion and percolation status of CNFs in matrix materials; they facilitate efficient loading, targeted delivery, and controlled release of medicinal drugs. Other nanocarriers like fullerenes, carbon nanotube, graphene, and diamond have also attracted considerable attention with their unique features that include optical, mechanical, chemical, and thermal properties, raising tremendous interest for their potential pharmaceutical applications. This chapter apprehends various fabrication techniques like electrospinning for carbon-based nanofibers, chemistry behind the molecular structure of these carriers along with their importance in the targeted delivery.

This chapter emphasizes on the carbon-based structures by various techniques concerning to their physiochemical and pharmacokinetic properties. Several challenges and their possible resolutions including nanostructure conjugates in nanometric range, controlling stability promising drug delivery options due to symmetric nature, higher drug loading, nontoxic nature, and better cell targeting potentials are some of the applications discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Grobert N (2007) Carbon nanotubes – becoming clean. Mater Today 10(1):28–35

    Article  CAS  Google Scholar 

  2. Mochida I, Yoon S-H et al (2006) Catalysts in syntheses of carbon and carbon precursors. J Braz Chem Soc 17(6):1059–1073

    Article  CAS  Google Scholar 

  3. Bakry R, Vallant RM et al (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2(4):639

    CAS  Google Scholar 

  4. Chen Z, Ma L et al (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2(3):238–250

    Article  CAS  Google Scholar 

  5. Bhatia A, Bhushan S et al (2009) Studies on tamoxifen encapsulated in lipid vesicles: effect on the growth of human breast cancer MCF-7 cells. J Liposome Res 19(3):169–172

    Article  CAS  Google Scholar 

  6. Dou Z, Xu Y et al (2012) Synthesis of PEGylated fullerene-5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil. Nanoscale 4(15):4624–4630

    Article  CAS  Google Scholar 

  7. Ahmadi R (2012) Computational study of chemical properties of Captopril drug and the connected form to Fullerene (C60) as a medicine nano carrier. J Phys Theor Chem 9(3):185–190

    Google Scholar 

  8. Mejri A, Vardanega D et al (2015) Encapsulation into carbon nanotubes and release of anticancer cisplatin drug molecule. J Phys Chem B 119(2):604–611

    Article  CAS  Google Scholar 

  9. Petrylak DP, Tangen CM et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351(15):1513–1520

    Article  CAS  Google Scholar 

  10. Raza K, Thotakura N et al (2015) C60-fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile. Int J Pharm 495(1):551–559

    Article  CAS  Google Scholar 

  11. Lu Y-J, Wei K-C et al (2012) Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B: Biointerfaces 89:1–9

    Article  CAS  Google Scholar 

  12. Bombelli FB, Webster CA et al (2014) The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncol 15(1):e22–e32

    Article  CAS  Google Scholar 

  13. Zhan H, Zhang G et al (2017) The best features of diamond nanothread for nanofibre applications. Nat Commun 8:14863

    Article  CAS  Google Scholar 

  14. McKee MG, Wilkes GL et al (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37(5):1760–1767

    Article  CAS  Google Scholar 

  15. Casasola R, Thomas NL et al (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55(18):4728–4737

    Article  CAS  Google Scholar 

  16. Mitchell S, Sanders J (2006) A unique device for controlled electrospinning. J Biomed Mater Res A 78((1):110–120

    Article  Google Scholar 

  17. Yardem O, Papila M et al (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29(1):34–44

    Article  Google Scholar 

  18. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36(1):71–79

    Article  CAS  Google Scholar 

  19. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  Google Scholar 

  20. Caraman M, Lazar M et al (2006) Arc discharge installation for fullerene production. Rom J Physiol 53:273–278

    Google Scholar 

  21. Schwander M, Partes K (2011) A review of diamond synthesis by CVD processes. Diam Relat Mater 20(9):1287–1301

    Article  CAS  Google Scholar 

  22. Brillas E, Martínez-Huitle CA (2011) Synthetic diamond films: preparation, electrochemistry, characterization and applications. Wiley, Hoboken

    Book  Google Scholar 

  23. Leung V, Ko F (2011) Biomedical applications of nanofibers. Polym Adv Technol 22(3): 350–365

    Article  CAS  Google Scholar 

  24. Mao X, Yang X et al (2014) Ultra-wide-range electrochemical sensing using continuous electrospun carbon nanofibers with high densities of states. ACS Appl Mater Interfaces 6(5):3394–3405

    Article  CAS  Google Scholar 

  25. Brettreich M, Hirsch A (1998) A highly water-soluble dendro [60] fullerene. Tetrahedron 39(18):2731–2734

    Article  CAS  Google Scholar 

  26. Schuster DI, Wilson SR et al (2000) Evaluation of the anti-HIV potency of a water-soluble dendrimeric fullerene. Proc Electrochem Soc 9:267–270

    Google Scholar 

  27. Kotelnikova R, Bogdanov G et al (2003) Nanobionics of pharmacologically active derivatives of fullerene C 60. J Nanopart Res 5(5):561–566

    Article  CAS  Google Scholar 

  28. Iwamoto Y, Yamakoshi Y (2006) A highly water-soluble C60–NVP copolymer: a potential material for photodynamic therapy. Chem Commun 46(46):4805–4807

    Article  Google Scholar 

  29. Mochalin VN, Shenderova O et al (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  Google Scholar 

  30. Khodabandehloo H, Zahednasab H et al (2016) Nanocarriers usage for drug delivery in cancer therapy. Iran J Cancer Prev 9(2):e3966

    Google Scholar 

  31. Yang K, Feng L et al (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547

    Article  CAS  Google Scholar 

  32. Lakshmi BB, Dorhout PK et al (1997) Sol–Gel template synthesis of semiconductor nanostructures. Chem Mater 9(3):857–862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awadh Bihari Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Misra, C., Yadav, A.B., Verma, R.K. (2018). Carbon-Based Nanofibers: Fullerenes, Diamond, and Carbon Nanostructures. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics