Skip to main content

Electrospun Membranes for Airborne Contaminants Capture

  • Living reference work entry
  • First Online:

Abstract

This chapter presents an overview of nanofiber-based materials fabricated for applications in air filtration. Air contaminants can be classified as gaseous or particulate matter, and the capability to capture these will strongly vary with the specifics of their chemistry, morphology, and agglomeration kinetics, as well as with atmospheric conditions, such as humidity and temperature. The capture mechanisms of different design methods must therefore be adapted to achieve stringent capture efficiency targets. For one, the benefits of nanofibers over more conventional microfibers reside in the small fiber diameter facilitating more tuneable and finer pore sizes, narrower pore size distributions, and higher specific surface areas. The advantages of nanofiber media for filtration applications, such as extreme compactness, are highlighted in the chapter concerned with the specific properties of nanofiber filters. The challenges arising from the use of nanofibers that is contrasted by opportunities that may direct future trends of nanofiber filters for air filtration applications are discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution.

References

  1. Zhu M et al (2016) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302(1600353):1–27

    Google Scholar 

  2. Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  3. International Organization for Standardization (2017) High efficiency filters and filter media for removing particles from air - Part 1: Classification, performance, testing and marking, ISO 29463-1:2017. Available from: International Organization for Standardization [September 2017]

    Google Scholar 

  4. Safety, N.I.f.O (2003) Guidance for filtration and air-cleaning systems to protect building environments from airborne chemical biological or radiological attacks. DIANE Publishing Columbia Parkway, Cincinnati, OH

    Google Scholar 

  5. Podgórski A, Bałazy A, Gradoń L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61(20):6804–6815

    Article  Google Scholar 

  6. Boni A, Clark M (2008) Filter media: improving filter media to achieve cleaner air. Filtr Sep 45(9):20–23

    Article  Google Scholar 

  7. Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1):1–8

    Article  Google Scholar 

  8. Tronville P, Rivers RD (2005) International standards: filters for buildings and gas turbines. Filtr Sep 42(7):39–43

    Article  Google Scholar 

  9. Kaufman A (1936) Die Faserstoffe für Atemschutzfilter Wirkungsweise und Verbesserungsmöglichkeiten. Z Vereines Dtsch Ing 80(20):593–600

    Google Scholar 

  10. Davies CN (1973) Air filtration. Academic, London

    Google Scholar 

  11. Hansen N (1932) Method for the manufacture of smoke filters or collective filters. Nicolai Louis Hansen, assignee, Britain. 384 (1)

    Google Scholar 

  12. Kimmer D et al. (2015) The effect of combination electrospun and meltblown filtration materials on their filtration efficiency. In: AIP conference proceedings. AIP Publishing

    Google Scholar 

  13. Graham K et al (2002) Polymeric nanofibers in air filtration applications. In: 5th annual technical conference & expo of the American Filtration & Separations Society, Galveston, Texas

    Google Scholar 

  14. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2(1):12

    Article  Google Scholar 

  15. Matulevicius J et al (2016) The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92:27–37

    Article  Google Scholar 

  16. Li J et al (2013) Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett:7(8)

    Google Scholar 

  17. Zhang S et al (2016) Anti-deformed polyacrylonitrile/polysulfone composite membrane with binary structures for effective air filtration. ACS Appl Mater Interfaces 8(12):8086–8095

    Article  Google Scholar 

  18. Nayak R et al (2012) Melt-electrospinning of polypropylene with conductive additives. J Mater Sci 47(17):6387–6396

    Article  Google Scholar 

  19. Department of the Environment and Heritage (2004) Personal Monitoring of Selected VOCs: The Contribution of Woodsmoke to Exposure. CANBERA ATC: Department of the Environment and Heritage

    Google Scholar 

  20. Australian, D.o.t.E.a.E (2004) State of the air: national ambient air quality status and trends report 1991–2001. Available from: http://www.environment.gov.au/resource/state-air-national-ambient-air-quality-status-and-trends-report-1991-2001

  21. Australian. Department of the Environment and Energy (2017) Blueprint for the future: independent review into the future security of the National Electricity Market

    Google Scholar 

  22. Kadam VV, Wang L, Padhye R (2016) Electrospun nanofibre materials to filter air pollutants – a review. J Ind Text. pp. 1–28. https://doi.org/10.1177/1528083716676812

  23. Australia. Department of the Environment and Energy (2004) Health impacts of ultrafine particles. Available from: http://www.environment.gov.au/protection/publications/health-impacts-ultrafine-particles

  24. Australia. Department of the Environment and Energy (2003). Toxic emissions from diesel vehicles in Australia. Available from: http://www.environment.gov.au/resource/toxic-emissions-diesel-vehicles-australia

  25. Environment Protection Authority Victoria (2015) Smog. Available from: http://www.epa.vic.gov.au/your-environment/air/smog

  26. British Standards Institution (1969) Method for sodium flame test for air filters british standards house, London, UK. Mechanical Engineering Industry Standards Committee, Vol. 31

    Google Scholar 

  27. ISO 29463 High-efficiency filters and filter media for removing particles in air. Part 1: classification, performance testing and marking, International Organization for Standardization (ISO): 26

    Google Scholar 

  28. Kim GT, Ahn YC, Lee JK (2008) Characteristics of Nylon 6 nanofilter for removing ultra fine particles. Korean J Chem Eng 25(2):368–372

    Article  Google Scholar 

  29. Dorman RG (1964) Filter materials. High-efficiency air filtration. White PAF and Smith SE. Butterworths, London, Great Britain

    Google Scholar 

  30. Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. New York, Wiley-Interscience, vol 1, 442p.

    Google Scholar 

  31. Jordan D (1954) The adhesion of dust particles. Br J Appl Phys 5(S3):S194

    Article  Google Scholar 

  32. Wei J et al (2006) The aerosol penetration through an electret fibrous filter. Chin Phys 15(8):1864

    Article  Google Scholar 

  33. Chuanfang Y (2012) Aerosol filtration application using fibrous media – an industrial perspective. Chin J Chem Eng 20(1):1–9

    Article  Google Scholar 

  34. Ramskill EA, Anderson WL (1951) The inertial mechanism in the mechanical filtration of aerosols. J Colloid Sci 6(5):416–428

    Article  Google Scholar 

  35. Ghochaghi N (2014) Experimental development of advanced air filtration media based on electrospun polymer fibers. Virginia Commonwealth University, Richmond, Virginia

    Google Scholar 

  36. Yun KM et al (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759

    Article  Google Scholar 

  37. Barhate R, Loong CK, Ramakrishna S (2006) Preparation and characterization of nanofibrous filtering media. J Membr Sci 283(1):209–218

    Article  Google Scholar 

  38. Vaughn E, Ramachandran G (2002) Fiberglass vs. synthetic air filtration media. INJ Fall 11:41–53

    Google Scholar 

  39. Pich J (1987) In: Matteson MJ, Orr C (eds) Gas filtration theory, filtration: principles and practices. Marcel Dekker, New York

    Google Scholar 

  40. Liu C et al (2015) Transparent air filter for high-efficiency PM2. 5 capture. Nat Commun 6:1–9

    Google Scholar 

  41. Hung C-H, Leung WW-F (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42

    Article  Google Scholar 

  42. Wang H et al (2010) Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters. In: Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE international conference on. IEEE

    Google Scholar 

  43. Sambaer W, Zatloukal M, Kimmer D (2012) 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem Eng Sci 82:299–311

    Article  Google Scholar 

  44. Wang N et al (2014) Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci 428:41–48

    Article  Google Scholar 

  45. Wang N et al (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6-polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3(47):23946–23954

    Article  Google Scholar 

  46. Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290

    Article  Google Scholar 

  47. Guibo Y et al (2013) The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: filtration potential, thermal treatment, and their continuous production. J Appl Polym Sci 128(2):1061–1069

    Article  Google Scholar 

  48. Wang N et al (2013) Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci 398:240–246

    Article  Google Scholar 

  49. Wan H et al (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26

    Article  Google Scholar 

  50. Wang Z, Pan Z (2015) Preparation of hierarchical structured nano-sized/porous poly (lactic acid) composite fibrous membranes for air filtration. Appl Surf Sci 356:1168–1179

    Article  Google Scholar 

  51. Dong Y et al (2009) Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng B Rev 15(3):333–351

    Article  Google Scholar 

  52. Wang Y et al (2014) Electrospun flexible self-standing γ-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J Mater Chem A 2(36):15124–15131

    Article  Google Scholar 

  53. Ahn Y et al (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6(6):1030–1035

    Article  Google Scholar 

  54. Li X Gong Y (2015) Design of polymeric nanofiber gauze mask to prevent inhaling PM2. 5 particles from haze pollution. J Chem 2015 1–5

    Google Scholar 

  55. Noreña-Caro D, Álvarez-Láinez M (2016) Functionalization of polyacrylonitrile nanofibers with β-cyclodextrin for the capture of formaldehyde. Mater Des 95:632–640

    Article  Google Scholar 

  56. Zhang R et al (2016) Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources. Nano Lett 16(6):3642–3649

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic F. Dumée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Al-Attabi, R., Morsi, Y.S., Schütz, J.A., Dumée, L.F. (2018). Electrospun Membranes for Airborne Contaminants Capture. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics