Advertisement

Electrical Properties of Nanowires and Nanofibers

  • Cristina Buzea
  • Ivan Pacheco
Living reference work entry

Abstract

This chapter focuses on the electrical properties of nanowires, nanofibers, and nanotubes made from a variety of materials. First a short review of their morphologies and composition is presented, emphasizing the wide variety of elements and compounds able to be fabricated as long-aspect ratio nanomaterials. Research of nanowires and nanofibers indicates that depending on their composition and dimensions, they can either be insulating, semiconducting, metallic, or superconducting. Several interesting effects appearing at nanoscale are discussed, among which proximity-induced superconductivity in wires made of nonsuperconducting materials due to superconducting electrodes, a switch in electrical behavior from metallic to semiconducting with chirality of carbon nanotubes, and metallicity of one-dimensional materials confined inside nanotubes that are semiconducting in bulk. Due to their small dimensions, nanowires and nanofibers present new challenges regarding their electrical properties. Small amounts of bending strains induce a semiconductor-metal transition in small diameter semiconducting nanowires. Their encapsulation in stronger nanotubes offers advantages, such as increase their mechanical strength and protect them from interacting with the atmosphere. Some materials fabricated as nanowires, while nonsuperconducting in bulk form, show superconductivity only on the nanowire surface. Last but not least, the toxic effects on humans due to handling nanowires and nanofibers are emphasized.

Keywords

Nanowires Nanofibers Electrical properties Superconductor Semiconductor Metallic Carbon nanotubes Proximity induced electrical properties 

Abbreviations

ξ(T)

Coherence length of the superconducting state at a temperature T

1D

One dimensional

AAM

Anodic alumina membrane

ALL-MBE

Atomic layer-by-layer molecular beam epitaxy

CNT

Carbon nanotube

D

Diameter

DC

Direct current

DWCNT

Double-walled carbon nanotube

e

The electron charge

FC

Field-cooled

fcc

Face center cubic

h

The Planck constant

Hc⊥

Critical field perpendicular to the wire

Hc//

Critical field parallel to the wire

Hc(0)

Critical magnetic field at 0 K

HRTEM

High-resolution transmission electron microscopy

I-V

Current-voltage

L

Length

LAMH

Langer-Ambegaokar-McCumber-Halperin

MWCNT

Multi-walled carbon nanotube

PCM

Polycarbonate membrane

PMMA

Poly(methyl methacrylate)

R

Resistance

RN

Normal state resistance

RQ

Quantum resistance

SEM

Scanning electron microscopy

SWCNT

Single-walled carbon nanotube

T

Temperature

Tc

Critical temperature of transition from normal to superconducting state

TCAD

Technology computer-aided design data

TEM

Transmission electron microscopy

V-I

Voltage-current

w

Width

ZFC

Zero-field-cooled

ξ(0)

Coherence length of the superconducting state at 0 K

Φ0

Flux quantum

References

  1. 1.
    Jones SLT et al (2015) Electron transport properties of sub-3-nm diameter copper nanowires. Phys Rev B 92(11):10CrossRefGoogle Scholar
  2. 2.
    Gao PX, Mai WJ, Wang ZL (2006) Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett 6(11):2536–2543CrossRefGoogle Scholar
  3. 3.
    Liang CH et al (2000) Preparation and characterization of amorphous SiOx nanowires. J Non-Cryst Solids 277(1):63–67CrossRefGoogle Scholar
  4. 4.
    Algra RE et al (2008) Twinning superlattices in indium phosphide nanowires. Nature 456(7220):369–372CrossRefGoogle Scholar
  5. 5.
    Shen GZ et al (2008) Single-crystalline and twinned Zn3P2 nanowires: synthesis, characterization, and electronic properties. J Phys Chem C 112(42):16405–16410CrossRefGoogle Scholar
  6. 6.
    Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures. Small 6(9):1012–1021CrossRefGoogle Scholar
  7. 7.
    Wang C et al (2008) Ultrathin Au nanowires and their transport properties. J Am Chem Soc 130(28):8902CrossRefGoogle Scholar
  8. 8.
    Cheng B, Le Y, Yu JG (2010) Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. J Hazard Mater 177(1–3):971–977CrossRefGoogle Scholar
  9. 9.
    Kolesnik-Gray MM et al (2015) Impact of surface and twin-boundary scattering on the electrical transport properties of Ag nanowires. Solid State Commun 202:48–51CrossRefGoogle Scholar
  10. 10.
    Sutter E, Sutter P (2006) Au-induced encapsulation of Ge nanowires in protective C shells. Adv Mater 18(19):2583CrossRefGoogle Scholar
  11. 11.
    Tian ML et al (2005) Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys Rev B 71(10):7CrossRefGoogle Scholar
  12. 12.
    Xu WH et al (2015) Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties. ACS Nano 9(1):241–250CrossRefGoogle Scholar
  13. 13.
    Lai SH, Liu SC, Lan MD (2007) Fabrication of MgB2 nanowire and its superconductivity. J Cryst Growth 304(2):460–463CrossRefGoogle Scholar
  14. 14.
    Tian ML et al (2015) Surface superconductivity in thin cylindrical Bi nanowire. Nano Lett 15(3):1487–1492CrossRefGoogle Scholar
  15. 15.
    Hu Y et al (2014) Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant. Sci Rep 4:3667CrossRefGoogle Scholar
  16. 16.
    Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445CrossRefGoogle Scholar
  17. 17.
    Wang N, Cai Y, Zhang RQ (2008) Growth of nanowires. Mater Sci Eng R-Rep 60(1–6):1–51Google Scholar
  18. 18.
    Xing YJ et al (2003) Silicon nanowires grown from Au-coated Si substrate. Appl Phys A-Mater Sci Process 76(4):551–553CrossRefGoogle Scholar
  19. 19.
    Seong WK, Kang WN (2008) Superconductivity of epitaxial MgB2 thick films and MgB2 nanowires grown by hybrid physical–chemical vapor deposition. Physica C: Supercond 468(15):1884–1887CrossRefGoogle Scholar
  20. 20.
    Saunders Z et al (2015) Characterization of engineered alumina nanofibers and their colloidal properties in water. J Nanopart Res 17(3):1–5CrossRefGoogle Scholar
  21. 21.
    Zhou KB et al (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229(1):206–212CrossRefGoogle Scholar
  22. 22.
    Xu YD et al (2017) Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties. Appl Phys A-Mater Sci Process 123(1):6CrossRefGoogle Scholar
  23. 23.
    Lord AM et al (2015) Controlling the electrical transport properties of nanocontacts to nanowires. Nano Lett 15(7):4248–4254CrossRefGoogle Scholar
  24. 24.
    Hussain M et al (2015) Electrical transport properties of single crystal vanadium pentoxide nanowires. Mater Chem Phys 159:19–24CrossRefGoogle Scholar
  25. 25.
    Han W et al (2016) Low-temperature synthesis and electronic transport of topological insulator SmB6 nanowires. CrystEngComm 18(41):7934–7939CrossRefGoogle Scholar
  26. 26.
    Park J et al (2005) Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J Am Chem Soc 127(23):8433–8440CrossRefGoogle Scholar
  27. 27.
    Lu XL et al (2006) Microstructure and superconductivity of La1.85Sr0.15CuO4 nanowire arrays. Adv Funct Mater 16(13):1754–1758CrossRefGoogle Scholar
  28. 28.
    Lai SH, Hsu YC, Lan MD (2008) Synthesis of Bi2Sr2CaCu2Oy nanowire and its superconductivity. Solid State Commun 148(9–10):452–454CrossRefGoogle Scholar
  29. 29.
    Tasis D et al (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136CrossRefGoogle Scholar
  30. 30.
    Tiwari SK et al (2016) Magical allotropes of carbon: prospects and applications. Crit Rev Solid State Mater Sci 41(4):257–317CrossRefGoogle Scholar
  31. 31.
    Dai HJ (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500(1–3):218–241CrossRefGoogle Scholar
  32. 32.
    Fujisawa K et al (2016) A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl Sci-Basel 6(4):39Google Scholar
  33. 33.
    Barzola-Quiquia J et al (2015) Magnetic order and superconductivity observed in bundles of double-wall carbon nanotubes. Carbon 88:16–25CrossRefGoogle Scholar
  34. 34.
    Bernholc J et al (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375CrossRefGoogle Scholar
  35. 35.
    Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677–732CrossRefGoogle Scholar
  36. 36.
    Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278CrossRefGoogle Scholar
  37. 37.
    Kaiser AB et al (2001) Some problems in understanding the electronic transport properties of carbon nanotube ropes. Curr Appl Phys 1(1):50–55CrossRefGoogle Scholar
  38. 38.
    Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog Mater Sci 77:125–211CrossRefGoogle Scholar
  39. 39.
    Shi W et al (2012) Superconductivity in bundles of double-wall carbon nanotubes. Sci Rep 2:7Google Scholar
  40. 40.
    Wang Z et al (2012) Superconductivity in 4-Angstrom carbon nanotubes-a short review. Nanoscale 4(1):21–41CrossRefGoogle Scholar
  41. 41.
    Tang DS et al (2006) Effect of H2O adsorption on the electrical transport properties of double-walled carbon nanotubes. Carbon 44(11):2155–2159CrossRefGoogle Scholar
  42. 42.
    Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758CrossRefGoogle Scholar
  43. 43.
    Gao RP et al (2000) Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys Rev Lett 85(3):622–625CrossRefGoogle Scholar
  44. 44.
    Odom TW et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRefGoogle Scholar
  45. 45.
    Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  46. 46.
    Ikuno T et al (2005) Coating carbon nanotubes with inorganic materials by pulsed laser deposition. J Appl Phys 98(11):4CrossRefGoogle Scholar
  47. 47.
    Zhou SM et al (2009) Superconducting single crystalline MgB2 nanotubes. Mater Lett 63(20):1680–1682CrossRefGoogle Scholar
  48. 48.
    Panchakarla LS et al (2014) Nanotubes from misfit layered compounds: a new family of materials with low dimensionality. J Phys Chem Lett 5(21):3724–3736CrossRefGoogle Scholar
  49. 49.
    Kaplan-Ashiri I, Tenne R (2016) On the mechanical properties of WS2 and MoS2 nanotubes and fullerene-like nanoparticles: in situ electron microscopy measurements. JOM 68(1):151–167CrossRefGoogle Scholar
  50. 50.
    Liu L et al (2011) Wet-chemical synthesis of palladium nanosprings. Nano Lett 11(9):3979–3982CrossRefGoogle Scholar
  51. 51.
    Liu Q et al (2015) Nanowires sheathed inside nanotubes: manipulation, properties and applications. Prog Mater Sci 70:1–49CrossRefGoogle Scholar
  52. 52.
    Khlobystov AN, Britz DA, Briggs GAD (2005) Molecules in carbon nanotubes. Acc Chem Res 38(12):901–909CrossRefGoogle Scholar
  53. 53.
    Fujimori T et al (2013) Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 4:8CrossRefGoogle Scholar
  54. 54.
    Tombros N et al (2008) Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube. Nano Lett 8(9):3060–3064CrossRefGoogle Scholar
  55. 55.
    Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21(11):2774–2793CrossRefGoogle Scholar
  56. 56.
    Eliseev AA et al (2009) Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russ Chem Rev 78(9):833–854CrossRefGoogle Scholar
  57. 57.
    Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110(3):1348–1385CrossRefGoogle Scholar
  58. 58.
    Cava CE et al (2007) Iron- and iron oxide-filled multi-walled carbon nanotubes: electrical properties and memory devices. Chem Phys Lett 444(4–6):304–308CrossRefGoogle Scholar
  59. 59.
    Liu SW et al (2000) Preparation and characterization of iron-encapsulating carbon nanotubes and nanoparticles. J Mater Chem 10(11):2502–2506CrossRefGoogle Scholar
  60. 60.
    Das A et al (2015) Magnetite (Fe3O4)-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites. J Nanopart Res 17(1):14CrossRefGoogle Scholar
  61. 61.
    Demoncy N et al (1998) Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur. Eur Phys J B 4(2):147–157CrossRefGoogle Scholar
  62. 62.
    Pandurangan A et al (2009) Single-step synthesis of germanium nanowires encapsulated within multi-walled carbon nanotubes. Carbon 47(7):1708–1714CrossRefGoogle Scholar
  63. 63.
    Barzegar HR et al (2016) Synthesis of graphene nanoribbons inside boron nitride nanotubes. Phys Status Solidi B-Basic Solid State Phys 253(12):2377–2379CrossRefGoogle Scholar
  64. 64.
    Xu FF et al (2004) Phases and crystallization of encapsulated cobalt nanorods inside BN nanotubes. Acta Mater 52(3):601–606CrossRefGoogle Scholar
  65. 65.
    Koga K et al (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412(6849):802–805CrossRefGoogle Scholar
  66. 66.
    Maniwa Y et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401(4–6):534–538CrossRefGoogle Scholar
  67. 67.
    Kyakuno H et al (2016) Diameter-dependent hydrophobicity in carbon nanotubes. J Chem Phys 145(6):12CrossRefGoogle Scholar
  68. 68.
    Agrawal KV et al (2016) Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat Nano. Advance online publication, p. 267–273Google Scholar
  69. 69.
    Terrones M et al (1998) Novel nanotubes and encapsulated nanowires. Appl Phys A-Mater Sci Process 66(3):307–317CrossRefGoogle Scholar
  70. 70.
    Amato M, Rurali R (2016) Surface physics of semiconducting nanowires. Prog Surf Sci 91(1):1–28CrossRefGoogle Scholar
  71. 71.
    Haggren T et al (2017) Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties. Nano Res 10(8):2657–2666CrossRefGoogle Scholar
  72. 72.
    Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803CrossRefGoogle Scholar
  73. 73.
    Xia YN et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRefGoogle Scholar
  74. 74.
    Rao CNR et al (2003) Inorganic nanowires. Prog Solid State Chem 31(1–2):5–147CrossRefGoogle Scholar
  75. 75.
    Kuchibhatla S et al (2007) One dimensional nanostructured materials. Prog Mater Sci 52(5):699–913CrossRefGoogle Scholar
  76. 76.
    Rojo MM et al (2013) Review on measurement techniques of transport properties of nanowires. Nanoscale 5(23):11526–11544CrossRefGoogle Scholar
  77. 77.
    Sett S, Das K, Raychaudhuri AK (2017) Investigation of factors affecting electrical contacts on single germanium nanowires. J Appl Phys 121(12):9CrossRefGoogle Scholar
  78. 78.
    Signorello G et al (2017) Manipulating surface states of III–V nanowires with uniaxial stress. Nano Lett 17(5):2816–2824CrossRefGoogle Scholar
  79. 79.
    Rabbani MG, Patil SR, Anantram MP (2016) Moderate bending strain induced semiconductor to metal transition in Si nanowires. Semicond Sci Technol 31(12):7CrossRefGoogle Scholar
  80. 80.
    Wang FY et al (2011) Shock-induced breaking of the nanowire with the dependence of crystallographic orientation and strain rate. Nanoscale Res Lett 6:11Google Scholar
  81. 81.
    Wang FY et al (2011) Uniaxial tension-induced breaking in the gold nanowire with the influence of defects and temperatures. J Appl Phys 110(8):8Google Scholar
  82. 82.
    Subramaniam C et al (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Commun 4:7CrossRefGoogle Scholar
  83. 83.
    Zhou Y et al (2016) Large-scale synthesis and electrical transport properties of single-crystalline SmB6 nanowires. J Phys D-Appl Phys 49(26):7CrossRefGoogle Scholar
  84. 84.
    Hatta S et al (2017) Electrical conduction and metal-insulator transition of indium nanowires on Si(111). Phys Rev B 95(19):6CrossRefGoogle Scholar
  85. 85.
    Kim HS et al (2016) Quantum electrical transport properties of topological insulator Bi2Te3 nanowires. Curr Appl Phys 16(1):51–56CrossRefGoogle Scholar
  86. 86.
    Law M, Goldberger J, Yang PD (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122CrossRefGoogle Scholar
  87. 87.
    Brunbauer FM et al (2016) Electrical transport properties of single-crystal Al nanowires. Nanotechnology 27(38):6CrossRefGoogle Scholar
  88. 88.
    Peng Y, Cullis T, Inkson B (2008) Accurate electrical testing of individual gold nanowires by in situ scanning electron microscope nanomanipulators. Appl Phys Lett 93(18):3Google Scholar
  89. 89.
    Kamalakar MV, Raychaudhuri AK (2009) Low temperature electrical transport in ferromagnetic Ni nanowires. Phys Rev B 79(20):8CrossRefGoogle Scholar
  90. 90.
    Pacheco I, Buzea C (2017) Metal nanoparticles and their toxicity, metal nanoparticles. In: Thota S, Crans DC (eds) Synthesis and applications in pharmaceutical sciences. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  91. 91.
    Teng XW et al (2009) Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett 9(9):3177–3184CrossRefGoogle Scholar
  92. 92.
    Geballe TH, Hammond RH, Wu PM (2015) What Tc tells. Phys C Supercond Appl 514:9–16CrossRefGoogle Scholar
  93. 93.
    Xing Y et al (2013) Electronic transport properties of topological insulator films and low dimensional superconductors. Front Phys 8(5):491–508CrossRefGoogle Scholar
  94. 94.
    Bezryadin A, Lau CN, Tinkham M (2000) Quantum suppression of superconductivity in ultrathin nanowires. Nature 404(6781):971–974CrossRefGoogle Scholar
  95. 95.
    Bezryadin A (2008) Quantum suppression of superconductivity in nanowires. J Phys-Condens Matter 20(4):19CrossRefGoogle Scholar
  96. 96.
    Marković N, Lau CN, Tinkham M (2003) The limits of superconductivity in MoGe nanowires. Phys C Supercond 387(1–2):44–48CrossRefGoogle Scholar
  97. 97.
    Buzea C, Robbie K (2005) Assembling the puzzle of superconducting elements: a review. Supercond Sci Technol 18(1):R1–R8CrossRefGoogle Scholar
  98. 98.
    Arutyunov KY, Golubev DS, Zaikin AD (2008) Superconductivity in one dimension. Phys Rep-Rev Sect Phys Lett 464(1–2):1–70Google Scholar
  99. 99.
    Bykova JS et al (2014) Flexible, ultralight, porous superconducting yarns containing shell-core magnesium diboride-carbon nanotube nanofibers. Adv Mater 26(44):7510–7515CrossRefGoogle Scholar
  100. 100.
    Ferrier M et al (2004) Superconductivity in ropes of carbon nanotubes. Solid State Commun 131(9–10):615–623CrossRefGoogle Scholar
  101. 101.
    Ferrier M et al (2009) Superconducting properties of carbon nanotubes. C R Phys 10(4):252–267CrossRefGoogle Scholar
  102. 102.
    Halder A, Kresin VV (2015) Spectroscopy of metal “superatom” nanoclusters and high-T-c superconducting pairing. Phys Rev B 92(21):214506CrossRefGoogle Scholar
  103. 103.
    Jarillo-Herrero P, van Dam JA, Kouwenhoven LP (2006) Quantum supercurrent transistors in carbon nanotubes. Nature 439(7079):953–956CrossRefGoogle Scholar
  104. 104.
    Kaiser AB, Skakalova V (2011) Electronic conduction in polymers, carbon nanotubes and graphene. Chem Soc Rev 40(7):3786–3801CrossRefGoogle Scholar
  105. 105.
    Kasumov AY et al (1999) Supercurrents through single-walled carbon nanotubes. Science 284(5419):1508–1511CrossRefGoogle Scholar
  106. 106.
    Kasumov AY et al (2003) Superconductivity in ropes of single-walled carbon nanotubes. Phys B-Condens Matter 329:1321–1322CrossRefGoogle Scholar
  107. 107.
    Kociak M et al (2001) Superconductivity in ropes of single-walled carbon nanotubes. Phys Rev Lett 86(11):2416–2419CrossRefGoogle Scholar
  108. 108.
    Kolhatkar AG et al (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009CrossRefGoogle Scholar
  109. 109.
    Li WH et al (2012) Formation of superconductivity through interparticle interactions in ferrimagnetic-like Sn nanoparticle assemblies. J Nanopart Res 14(4):764CrossRefGoogle Scholar
  110. 110.
    Mishra S et al (2014) Enhancement of superconducting T-c (33 K) by entrapment of FeSe in carbon coated Au-Pd17Se15 nanoparticles. ACS Nano 8(3):2077–2086CrossRefGoogle Scholar
  111. 111.
    Takesue I et al (2006) Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys Rev Lett 96(5):2462CrossRefGoogle Scholar
  112. 112.
    Tang ZK et al (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526):2462–2465CrossRefGoogle Scholar
  113. 113.
    Ye ZX et al (2008) Observation of superconductivity in single crystalline Bi nanowires. Nanotechnology 19(8):5CrossRefGoogle Scholar
  114. 114.
    Shanenko AA et al (2006) Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect. Phys Rev B 74(5):4CrossRefGoogle Scholar
  115. 115.
    Bellucci S et al (2007) Size dependent superconductivity in small-diameter carbon nanotubes. Phys C-Supercond Appl 460:1057–1058CrossRefGoogle Scholar
  116. 116.
    Lortz R et al (2009) Superconducting characteristics of 4-angstrom carbon nanotube-zeolite composite. Proc Natl Acad Sci U S A 106(18):7299–7303CrossRefGoogle Scholar
  117. 117.
    Kresin VZ, Ovchinnikov YN (2013) Superconducting state of metallic clusters: potential for room temperature superconductivity, novel nano-based tunneling networks. J Supercond Nov Magn 26(4):745–748CrossRefGoogle Scholar
  118. 118.
    Wang J et al (2009) Proximity-induced superconductivity in nanowires: minigap state and differential magnetoresistance oscillations. Phys Rev Lett 102(24):4Google Scholar
  119. 119.
    Wang J et al (2010) Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nat Phys 6(5):389–394CrossRefGoogle Scholar
  120. 120.
    Kim BK et al (2017) Strong superconducting proximity effects in PbS semiconductor nanowires. ACS Nano 11(1):221–226CrossRefGoogle Scholar
  121. 121.
    Buzea C et al (2001) The origin of resistance peak effect in high-temperature superconductors-apparent T<sub>c</sub> anisotropy due to J<sub>c</sub> anisotropy. IEEE Trans Appl Supercond 11(1):3655–3658CrossRefGoogle Scholar
  122. 122.
    Zgirski M et al (2008) Quantum fluctuations in ultranarrow superconducting aluminum nanowires. Phys Rev B 77(5):6CrossRefGoogle Scholar
  123. 123.
    Santhanam P et al (1991) Resistance anomaly near the superconducting transition-temperature in short aluminum wires. Phys Rev Lett 66(17):2254–2257CrossRefGoogle Scholar
  124. 124.
    Zgirski M et al (2005) Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett 5(6):1029–1033CrossRefGoogle Scholar
  125. 125.
    Tian ML et al (2009) Superconductivity and quantum oscillations in crystalline Bi nanowire. Nano Lett 9(9):3196–3202CrossRefGoogle Scholar
  126. 126.
    Johnson RC et al (2013) Superconductivity of Bi confined in an opal host. J Low Temp Phys 170(3–4):205–215CrossRefGoogle Scholar
  127. 127.
    Salvato M et al (2016) Transport properties in aggregates of Nb nanowires templated by carbon nanotube films. Carbon 105:544–550CrossRefGoogle Scholar
  128. 128.
    Rogachev A, Bezryadin A (2003) Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes. Appl Phys Lett 83(3):512–514CrossRefGoogle Scholar
  129. 129.
    Rogachev A et al (2006) Magnetic-field enhancement of superconductivity in ultranarrow wires. Phys Rev Lett 97(13):4CrossRefGoogle Scholar
  130. 130.
    Michotte S et al (2004) Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage. Phys Rev B 69(9):12CrossRefGoogle Scholar
  131. 131.
    Sharifi F, Herzog AV, Dynes RC (1993) Crossover from 2-dimension to one-dimension in in-situ grown wires of PB. Phys Rev Lett 71(3):428–431CrossRefGoogle Scholar
  132. 132.
    He MQ et al (2013) “Giant” enhancement of the upper critical field and fluctuations above the bulk T-c in superconducting ultrathin lead nanowire arrays. ACS Nano 7(5):4187–4193CrossRefGoogle Scholar
  133. 133.
    Zhang Y et al (2016) Dramatic enhancement of superconductivity in single-crystalline nanowire arrays of Sn. Sci Rep 6:10CrossRefGoogle Scholar
  134. 134.
    Arutyunov KY et al (2001) Superconducting transition of single-crystal tin microstructures. Phys Rev B 63(9):4CrossRefGoogle Scholar
  135. 135.
    Johansson A et al (2005) Nanowire acting as a superconducting quantum interference device. Phys Rev Lett 95(11):4CrossRefGoogle Scholar
  136. 136.
    Graybeal JM et al (1987) Apparent destruction of superconductivity in the disordered one-dimensional limit. Phys Rev Lett 59(23):2697–2700CrossRefGoogle Scholar
  137. 137.
    Bollinger AT et al (2004) Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires. Phys Rev B 69(18):4CrossRefGoogle Scholar
  138. 138.
    Buzea C, Yamashita T (2001) Review of the superconducting properties of MgB2. Supercond Sci Technol 14(11):R115–R146CrossRefGoogle Scholar
  139. 139.
    Chu CW et al (1993) Superconductivity above 150-K in HGBA2CA2CU3O8+delta at high-pressures. Nature 365(6444):323–325CrossRefGoogle Scholar
  140. 140.
    Koblischka MR et al (2016) Magnetic properties of electrospun non-woven superconducting fabrics. AIP Adv 6(3):7CrossRefGoogle Scholar
  141. 141.
    Zeng XL et al (2017) Preparation of granular Bi-2212 nanowires by electrospinning. Supercond Sci Technol 30(3):7CrossRefGoogle Scholar
  142. 142.
    Jha AK, Khare N (2009) Single-crystalline superconducting MgB2 nanowires. Supercond Sci Technol 22(7):3CrossRefGoogle Scholar
  143. 143.
    Wu CS et al (2012) Magnetization and electric transport properties of single-crystal MgB2 nanowires. Nanotechnology 23(46):6Google Scholar
  144. 144.
    Poole CP, Farach AH, Creswick RJ (1995) Superconductivity. Academic, San DiegoGoogle Scholar
  145. 145.
    Litombe NE et al (2014) La2-xSrxCuO4 superconductor nanowire devices. Phys C-Supercond Appl 506:169–173CrossRefGoogle Scholar
  146. 146.
    Zeng XL, Koblischka MR, Hartmann U (2015) Synthesis and characterization of electrospun superconducting (La, Sr) CuO4 nanowires and nanoribbons. Mater Res Express 2(9):9CrossRefGoogle Scholar
  147. 147.
    Li JM et al (2011) Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen. CrystEngComm 13(23):6964–6967CrossRefGoogle Scholar
  148. 148.
    Nawaz S, Bauch T, Lombardi F (2011) Transport properties of YBCO nanowires. IEEE Trans Appl Supercond 21(3):164–167CrossRefGoogle Scholar
  149. 149.
    Papari G et al (2012) High critical current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond Sci Technol 25(3):5CrossRefGoogle Scholar
  150. 150.
    Koblischka MR, Zeng XL, Hartmann U (2016) Commercial alumina templates as base to fabricate 123-type high-T-c superconductor nanowires. Phys Status Solidi A-Appl Mater Sci 213(4):1069–1076CrossRefGoogle Scholar
  151. 151.
    Xu K, Heath JR (2008) Long, highly-ordered high-temperature superconductor nanowire arrays. Nano Lett 8(11):3845–3849CrossRefGoogle Scholar
  152. 152.
    Zgirski M, Arutyunov KY (2007) Experimental limits of the observation of thermally activated phase-slip mechanism in superconducting nanowires. Phys Rev B 75(17):4CrossRefGoogle Scholar
  153. 153.
    Bose S, Ayyub P (2014) A review of finite size effects in quasi-zero dimensional superconductors. Rep Prog Phys 77(11):28CrossRefGoogle Scholar
  154. 154.
    Bose S et al (2005) Mechanism of the size dependence of the superconducting transition of nanostructured Nb. Phys Rev Lett 95(14):4CrossRefGoogle Scholar
  155. 155.
    Croitoru MD, Shanenko AA, Peeters FM (2007) Dependence of superconducting properties on the size and shape of a nanoscale superconductor: from nanowire to film. Phys Rev B 76(2):6CrossRefGoogle Scholar
  156. 156.
    Ning W et al (2015) Superconductor-insulator transition in quasi-one-dimensional single-crystal Nb2PdS5 nanowires. Nano Lett 15(2):869–875CrossRefGoogle Scholar
  157. 157.
    Zhang B et al (2017) Observation of high T-c one dimensional superconductivity in 4 angstrom carbon nanotube arrays. AIP Adv 7(2):11Google Scholar
  158. 158.
    Chowdhury ANR, Koh SJA, Wang CM (2015) Nonlinear-elastic membrane-shell model for single-walled carbon nanotubes under uni-axial deformation. Comput Mater Sci 97:237–244CrossRefGoogle Scholar
  159. 159.
    Galano A (2010) Carbon nanotubes: promising agents against free radicals. Nanoscale 2(3):373–380CrossRefGoogle Scholar
  160. 160.
    Zhang HL et al (2011) Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem Soc Rev 40(3):1324–1336CrossRefGoogle Scholar
  161. 161.
    Ebbesen TW et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56CrossRefGoogle Scholar
  162. 162.
    Shi W et al (2012) Superconductivity in bundles of double-wall carbon nanotubes. Sci Rep 2:625CrossRefGoogle Scholar
  163. 163.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71. and references thereinCrossRefGoogle Scholar
  164. 164.
    Castranova V, Schulte PA, Zumwalde RD (2013) Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 46(3):642–649CrossRefGoogle Scholar
  165. 165.
    Choi KM, An HC (2016) Characterization and exposure measurement for indium oxide nanofibers generated as by products in the LED manufacturing environment. J Occup Environ Hyg 13(2):D23–D30CrossRefGoogle Scholar
  166. 166.
    Birch ME et al (2011) Exposure and emissions monitoring during carbon nanofiber production-part I: elemental carbon and iron-soot aerosols. Ann Occup Hyg 55(9):1016–1036Google Scholar
  167. 167.
    Li N et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IIPB Medicine CorporationOwen SoundCanada
  2. 2.Department of PathologyGrey Bruce Health ServicesOwen SoundCanada
  3. 3.Department of Pathology and Laboratory Medicine, Schülich School of Medicine & DentistryWestern UniversityLondonCanada

Personalised recommendations