Molecular Dynamics Simulation and Molecular Orbital Method

  • Ya-Pu Zhao
  • Feng-Chao Wang
  • Mei Chi
Living reference work entry


Computer simulations have provided a powerful technique in understanding the fundamental physics and mechanics of adhesion. In this chapter, various simulation methods pertaining to adhesion technology are introduced, such as the molecular dynamics simulations, the quantum mechanics calculations, the molecular orbital method, the density functional theory, and the molecular mechanics simulations. Besides, some combined methods such as the hybrid quantum mechanics/molecular mechanics simulations, ab initio molecular dynamics, and the density-functional-based tight-binding method are reviewed. General features and routines of these methods as well as the basic theory are described. The advantages and disadvantages of these methods are compared and discussed. Each method has the distinctive advantage and is suitable for specific condition. Some examples are proposed to give the direct perception when investigating adhesion issues using various simulation methods. All these instances are expected to be helpful to readers when performing the corresponding simulations and analyzing of the results.


Ab initio molecular dynamics (AIMD) adhesion Car–Parrinello molecular dynamics (CPMD) Density functional theory (DFT) Density-functional-based tight-binding (DFTB) Molecular dynamics (MD) Molecular mechanics (MM) Molecular orbital (MO) Quantum mechanics (QM) Quantum mechanics/molecular mechanics (QM/MM) simulations 



Part of the work presented in this chapter was jointly supported by the National High-tech R&D Program of China (863 Program, Grant No. 2007AA021803), National Basic Research Program of China (973 Program, Grant No. 2007CB310500), and National Natural Science Foundation of China (NSFC, Grant Nos. 10772180, 60936001, and 11072244).


  1. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459MathSciNetCrossRefGoogle Scholar
  2. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, OxfordzbMATHGoogle Scholar
  3. Arici C, Ercan F, Atakol O, Basgut O (2002) Crystal structure of [N,N′-bis(3,5-dinitrosalicylidene-1,3-propanediaminato)bis(3,4-dimethylpyridine)]nickel(II)dioxane solvate. Anal Sci 18(3):375CrossRefGoogle Scholar
  4. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43CrossRefGoogle Scholar
  5. Bharat B (2004) Springer handbook of nanotechnology. Springer, BerlinGoogle Scholar
  6. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187CrossRefGoogle Scholar
  7. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471CrossRefGoogle Scholar
  8. Chi M, Zhao YP (2009) Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Comput Mater Sci 46(4):1085CrossRefGoogle Scholar
  9. Daintith J (2004) Oxford dictionary of chemistry. Oxford University Press, OxfordzbMATHGoogle Scholar
  10. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508CrossRefGoogle Scholar
  11. Delley B (2000) From molecules to solids with the DMol 3 approach. J Chem Phys 113(18):7756CrossRefGoogle Scholar
  12. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66(15):155125CrossRefGoogle Scholar
  13. Ferre N, Assfeld X, Rivail JL (2002) Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 23(6):610CrossRefGoogle Scholar
  14. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700CrossRefGoogle Scholar
  15. Hehre WJ (1976) Ab initio molecular orbital theory. Acc Chem Res 9(11):399CrossRefGoogle Scholar
  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3):864MathSciNetCrossRefGoogle Scholar
  17. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33CrossRefGoogle Scholar
  18. Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc A 106(738):463CrossRefGoogle Scholar
  19. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926CrossRefGoogle Scholar
  20. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283CrossRefzbMATHGoogle Scholar
  21. Kendall K (1975) Thin-film peeling-the elastic term. J Phys D Appl Phys 8(13):1449CrossRefGoogle Scholar
  22. Kendall K (2001) Molecular adhesion and its applications. Kluwer/Plenum, New YorkGoogle Scholar
  23. Khandeparker L, Anil AC (2007) Underwater adhesion: the barnacle way. Int J Adhes Adhes 27(2):165CrossRefGoogle Scholar
  24. Leach AR (2001) Molecular modelling: principles and applications. Pearson Education, New YorkGoogle Scholar
  25. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062MathSciNetCrossRefGoogle Scholar
  26. Li J (2003) AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sci Eng 11(2):173CrossRefGoogle Scholar
  27. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306CrossRefGoogle Scholar
  28. Lyne PD, Hodoscek M, Karplus M (1999) A hybrid QM-MM potential employing Hartree-Fock or density functional methods in the quantum region. J Phys Chem A 103(18):3462CrossRefGoogle Scholar
  29. Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16(9):1170CrossRefGoogle Scholar
  30. Mischler C, Horbach J, Kob W, Binder K (2005) Water adsorption on amorphous silica surfaces: a Car-Parrinello simulation study. J Phys Condens Matter 17(26):4005CrossRefGoogle Scholar
  31. Montemagno C, Bachand G (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10(3):225CrossRefGoogle Scholar
  32. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I J Chem Phys 23(10):1833CrossRefGoogle Scholar
  33. Nelson MT, Humphrey W, Gursoy A, Dalke A, Kale LV, Skeel RD, Schulten K (1996) NAMD: a parallel, object oriented molecular dynamics program. Int J Supercomputer Appl High Perform Comput 10(4):251Google Scholar
  34. Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F-1-ATPase. Nature 386(6622):299CrossRefGoogle Scholar
  35. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045CrossRefGoogle Scholar
  36. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1–3):1CrossRefzbMATHGoogle Scholar
  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  38. Perdew JP, Ruzsinszky A, Tao JM, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123(6):062201CrossRefGoogle Scholar
  39. Petrenko PA, Gdaniec M, Simonov YA, Stavila VG, Gulea AP (2004) Crystal structure of monoprotonated Ni(II) nitrilotriacetate tetrahydrate. Russ J Coord Chem 30(7):813CrossRefGoogle Scholar
  40. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1CrossRefzbMATHGoogle Scholar
  41. Ponder JW, Richards FM (1987) An efficient newton-like method for molecular mechanics energy minimization of large molecules. J Comput Chem 8(7):1016CrossRefGoogle Scholar
  42. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw Hill, New YorkGoogle Scholar
  43. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  44. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23(2):69CrossRefzbMATHGoogle Scholar
  45. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327CrossRefGoogle Scholar
  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347CrossRefGoogle Scholar
  47. Shi XH, Kong Y, Zhao YP, Gao HJ (2005) Molecular dynamics simulation of peeling a DNA molecule on substrate. Acta Mech Sin 21(3):249CrossRefzbMATHGoogle Scholar
  48. Yang ZY, Zhao YP (2006) QM/MM and classical molecular dynamics simulation of His-tagged peptide immobilization on nickel surface. Mater Sci Eng A 423(1–2):84CrossRefGoogle Scholar
  49. Yin J, Zhao YP (2009) Hybrid QM/MM simulation of the hydration phenomena of dipalmitoylphosphatidylcholine headgroup. J Colloid Interface Sci 329(2):410CrossRefGoogle Scholar
  50. Yin J, Zhao YP, Zhu RZ (2005) Molecular dynamics simulation of barnacle cement. Mater Sci Eng A 409(1–2):160CrossRefGoogle Scholar
  51. Yuan QZ, Zhao YP, Li LM, Wang TH (2009) Ab initio study of ZnO based gas sensing mechanisms: surface reconstruction and charge transfer. J Phys Chem C 113(15):6107CrossRefGoogle Scholar
  52. Zang JL, Yuan QZ, Wang FC, Zhao YP (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD, and first principle simulations. Comput Mater Sci 46(3):621CrossRefGoogle Scholar
  53. Zhang YK, Lee TS, Yang WT (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110(1):46CrossRefGoogle Scholar
  54. Zhao YP, Wang LS, Yu TX (2003) Mechanics of adhesion in MEMS-a review. J Adhes Sci Technol 17(4):519CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Nonlinear Mechanics (LNM), Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations