Skip to main content

Forces Involved in Adhesion

  • Living reference work entry
  • First Online:

Abstract

The establishment of interfacial bonds through forces at the interface causes materials to attract one another. Therefore adhesion between materials and adhesive in assemblies are intimately related to the interatomic and intermolecular interactions at the interface of the two considered surfaces. Describing the mechanism responsible for adhesion in simple terms is difficult due to the complexity and evolving understanding of the subject. Nevertheless, when considering adhesion phenomena it is important to consider both the bulk and surface mechanical properties of the materials in contact and the type of interfacial forces established at the interface. High adhesion can only be obtained if the interface can sustain sufficient stress to induce dissipative forms of deformation, such as flow, yield, or crazing, in the polymer. Under most circumstances such dissipative processes can only be obtained when the interface is coupled with sufficient density of bonds. This chapter focuses on the description of the main forces responsible for adhesion, from strong covalent bonds to weak van der Waals forces, also considering some more specific interactions such as acid-base (like hydrogen bonding) or capillary forces (that could, as an example, influence adhesion of nanoparticles). The second part of this chapter concerns recent developments in experimental scanning probe techniques that may give assess to direct adhesion forces determination at the nanoscale. A case study is presented.

This is a preview of subscription content, log in via an institution.

References

  • Amouroux N, Léger L (2003) Effect of dangling chains on adhesion hysteresis of silicone elastomers, probed by JKR test. Langmuir 19:1396

    Article  Google Scholar 

  • Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554

    Article  Google Scholar 

  • Boisgard R, Aime JP et al (2002) Surface mechanical instabilities and dissipation under the action of the oscillating tip. Surf Sci 511:171

    Article  Google Scholar 

  • Brochart-Wyart F, de Gennes PG et al (1994) Adhesion promoters. J Phys Chem 98:9405

    Article  Google Scholar 

  • Brogly M, Nardin M et al (1996) Evidence of acid–base interfacial adducts in various polymer/metal systems by IRAS: improvement of adhesion. J Adhes 58:263

    Article  Google Scholar 

  • Brogly M, Grohens Y et al (1997) Influence of tacticity on the conformation and development of acid-base adducts of PMMA homopolymers adsorbed on aluminium mirrors. Int J Adhes Adhes 17:257

    Article  Google Scholar 

  • Brogly M, Awada H et al (2009) Contact atomic force microscopy: a powerful tool in adhesion science, Nanaoscience and technology, applied scanning probe methods XI. Springer, Berlin

    Google Scholar 

  • Brown HR (1991) A molecular interpretation of the toughness of glassy polymers. Macromolecules 24:2752

    Article  Google Scholar 

  • Brown HR, Deline VR et al (1989) Evidence for cleavage of polymer chains by crack propagation. Nature 341:221

    Article  Google Scholar 

  • Burns AR, Houston JE et al (1999) Molecular level friction as revealed with a novel scanning probe. Langmuir 15:2922

    Article  Google Scholar 

  • Casimir HBG, Polder D (1948) The influence of retardation on the London-van der Waals forces. Phys Rev 73:360

    Article  MATH  Google Scholar 

  • Coleman MM, Graf F et al (1991) Specific interactions and the miscibility of polymer blends. Technomic Pub, Basel

    Google Scholar 

  • Debye PJW (1921) Molekularkräfte und ihre Elektrische Deutung. Phys Z 22:302

    Google Scholar 

  • de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827

    Article  Google Scholar 

  • de Gennes PG, Léger L (1982) Dynamics of entangled polymer chains. Annu Rev Phys Chem 33:49

    Article  Google Scholar 

  • Derjaguin BV, Muller VM et al (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314

    Article  Google Scholar 

  • Drago RS (1973) Quantitative evaluation and prediction of donor-acceptor interactions. Struct Bond 15:73

    Article  Google Scholar 

  • Drago RS, Wayland B (1965) A double-scale equation for correlating enthalpies of Lewis acid-base interactions. J Am Chem Soc 87:3571

    Article  Google Scholar 

  • Dupré A (1869) Théorie Mécanique de la Chaleur. Gauthier-Villars, Paris

    Google Scholar 

  • Fisher LR, Israelachvili JN (1979) Direct experimental verification of the Kelvin equation for capillary condensation. Nature 277:548

    Article  Google Scholar 

  • Flinn DH, Guzonas DA et al (1994) Characterization of silica surfaces hydrophobized by octadecyltrichlorosilane. Colloids Surf A 87:163

    Article  Google Scholar 

  • Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40

    Article  Google Scholar 

  • Fowkes FM, Tischler DO et al (1984) Acid-base complexes of polymers. J Polym Sci: Polym Chem 22:547

    Google Scholar 

  • Gent AN, Ahagon A (1975) Effect of interfacial bonding on the strength of adhesion. J Polym Sci Polym Phys 13:1285

    Article  Google Scholar 

  • Gutmann V (1977) The donor-acceptor approach to molecular interaction. Plenum Press, New York

    Google Scholar 

  • Hamaker HC (1937) The London – van der Waals attraction between spherical particles. Physica 4:1058

    Article  Google Scholar 

  • Hawthorne MF, Dunks GB (1972) Metallocarboranes that exhibit novel chemical features. Science 178:462

    Article  Google Scholar 

  • Hertz H (1896) Miscellaneous papers. Macmillan, London

    MATH  Google Scholar 

  • Hough DB, White LR (1980) The calculation of Hamaker constants from Liftshitz theory with applications to wetting phenomena. Adv Colloid Interf Sci 14:3

    Article  Google Scholar 

  • Israelachvili JN (1991) Intermolecular and surface forces. Academic Press Ltd, London

    Google Scholar 

  • Jensen WB (1979) The Lewis acid-base concepts: an overview. Wiley, New York

    Google Scholar 

  • Johnson KL, Kendall K et al (1971) Surface energy and the contact of elastic solid. Proc R Soc A 324:301

    Article  Google Scholar 

  • Jones R, Pollock HM et al (2002) Adhesion forces between glass and silicon surfaces in air studied by AFM: effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 18:8045

    Article  Google Scholar 

  • Keesom WH (1922) Die Berechnung der molekularen Quadrupol- momente aus der Zustandsgieichung. Phys Z 23:225

    Google Scholar 

  • Kim DI, Grobelny J et al (2008) Origin of adhesion in humid air. Langmuir 24:1873

    Article  Google Scholar 

  • Klopman G (1974) Chemical reactivity and reaction paths. Wiley-Intersciences, New York

    Google Scholar 

  • Laurens C, Creton C et al (1994) Adhesion promotion mechanisms at isotactic polypropylene/polyamide 6 interfaces: role of the copolymer architecture. Macromolecules 37:6814

    Article  Google Scholar 

  • Lee LH (1991) Fundamentals of adhesion. Plenum Press, New York

    Book  Google Scholar 

  • Lewis GN (1923) Valence and the structure of atoms and molecules. The Chemical Catalog Co, New York

    Google Scholar 

  • Lewis AF, Natarajan Gounder RT (1991) In: Patrick RL (ed) Treatise on adhesion and adhesives, vol 5. Arnold, Cop, New York, p 313

    Google Scholar 

  • London F (1937) The general theory of molecular forces. J Chem Soc Faraday Trans 33:8

    Article  Google Scholar 

  • Marcus Y (1984) The effectivity of solvents as electron pair donors. J Solut Chem 13:599

    Article  Google Scholar 

  • Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243

    Article  Google Scholar 

  • Mulliken RS, Pearson WB (1969) Molecular complexes: a lecture and reprint volume. Wiley-Intersciences, New York

    Google Scholar 

  • Nakamura S, Pavlovic E et al (2007) Fracture energy of epoxy interfaces with layers of different silane coupling agents. J Adhes 83:351

    Article  Google Scholar 

  • Noel O, Brogly M et al (2004) In situ determination of the thermodynamic surface properties of chemically modified surfaces on a local scale: an attempt with the atomic force microscope. Langmuir 20:2707

    Article  Google Scholar 

  • Noel O, Awada H et al (2006) Force curve measurements with the AFM: application to the in situ determination of grafted silicon-wafer surface energies. J Adhes 82:649

    Article  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  • Pauling L (1960) The nature of chemical bond. Cornell University Press, New York

    MATH  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533

    Article  Google Scholar 

  • Plueddemann EP (1982) Silane coupling agents. Plenum Press, New York

    Book  Google Scholar 

  • Riddle FL Jr, Fowkes FM (1990) Spectral shifts in acid-base chemistry. 1. van der Waals contributions to acceptor numbers. J Am Chem Soc 112:3259

    Article  Google Scholar 

  • Riedo E, Levy F et al (2002) Kinetics of capillary condensation in nanoscopic sliding friction. Phys Rev Lett 88:185505

    Article  Google Scholar 

  • Shankar S, Parr RG (1985) Electronegativity and hardness as coordinates in structure stability diagram. Proc Natl Acad Sci USA 82:264

    Article  Google Scholar 

  • Spruch L (1986) Retarded, or Casimir, long-range potentials. Phys Today 11:37

    Article  Google Scholar 

  • Tao G, Gong A et al (2001) Surface functionalized polypropylene: synthesis, characterization, and adhesion properties. Macromolecules 34:7672

    Article  Google Scholar 

  • Tirrel M, Falsafi A et al (2001) Role of chain architecture in the adhesion of block copolymers. Macromolecules 34:1323

    Article  Google Scholar 

  • Weeks BL, Vaughn MW et al (2005) Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 21:8096

    Article  Google Scholar 

  • Wool RP (1995) Polymer interfaces. Hanser, Berlin

    Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Dekker Inc, New York

    Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc A 95:65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Brogly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Brogly, M. (2017). Forces Involved in Adhesion. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_3-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_3-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics