Skip to main content

Special Tests

  • Living reference work entry
  • First Online:
Handbook of Adhesion Technology

Abstract

This chapter gives a brief description of special mechanical tests for various types of materials and sample geometries, such as blister tests for membranes/adhesives/coatings, tensile tests and shear tests for sealants and foam adhesives, indentation and scratch tests for coatings, tack tests for pressure sensitive adhesives, and bimaterial curvature tests for characterizing residual stress, stress-free temperature, and coefficient of thermal expansion of adhesives bonded to substrates of interest. In addition, some applications of these tests are also described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams RD, Coppendale J, Peppiatt NA (1978) Stress analysis of axisymmetric butt joints loaded in torsion and tension. J Strain Anal 13(1):1–10

    Article  Google Scholar 

  • Adams RD, Comyn J, Wake WC (1997) Structural adhesive joints in engineering. Chapman and Hall, London

    Google Scholar 

  • Allen MG, Senturia SD (1989) Application of the island blister test for thin-film adhesion measurement. J Adhes 29(1–4):219–231

    Article  Google Scholar 

  • Anderson GP, Bennett SJ, DeVries KL (1977) Analysis and testing of adhesive bonds. Academic Press, New York

    Google Scholar 

  • Anderson GP, Chandapeta S, DeVries KL (1988). Effect on removing eccentricity from button tensile tests. Adhesively bonded joints: testing, analysis, and design. S. Johnson, ASTM. STP-981

    Google Scholar 

  • ASTM-C719-14 (2014) Standard test method for adhesion and cohesion of elastomeric joint sealants under cyclic movement (Hockman cycle). ASTM, West Conshohocken

    Google Scholar 

  • ASTM-C794 (2010). Standard test method for adhesion-in-peel of elastomeric joint sealants. ASTM, West Conshohocken, PA

    Google Scholar 

  • ASTM-D1002-99 (1999). Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal). Annual book of ASTM standards. ASTM, West Conshohocken, 15.06: 42–45

    Google Scholar 

  • ASTM-D4896-95 (2001) Standard guide for use of adhesive-bonded single lap-joint specimen test results, Annual book of ASTM standards, vol 15.06. ASTM, West Conshohocken, pp 419–424

    Google Scholar 

  • Bagchi A, Lucas GE, Suo Z, Evans AG (1994) New procedure for measuring the decohesion energy for thin ductile film on substrates. J Mater Res 9(7):1734–1741

    Article  Google Scholar 

  • Benjamin P, Weaver C (1963) Adhesion of metals to crystal faces. R Soc Proc Ser A 274(1357):267–273

    Article  Google Scholar 

  • Borgmeier PR and KL DeVries (2000). Interpreting adhesive joint tests. 2nd international symposium on adhesive joints, Newark

    Google Scholar 

  • Bull SJ (2001) Can the scratch adhesion test ever be quantitative? Adhesion measurement of films and coatings. K. L. Mittal. Utrecht, vol 2. VSP, p 107

    Google Scholar 

  • Case SL, O'Brien EP, Ward TC (2005) Cure profiles, crosslink density, residual stresses, and adhesion in a model epoxy. Polymer 46(24):10831–10840

    Article  Google Scholar 

  • Chang YS, Lai YH, Dillard DA (1989) The constrained blister – a nearly constant strain-energy release rate test for adhesives. J Adhes 27(4):197–211

    Article  Google Scholar 

  • Chang T, Sproat EA, Lai YH, Shephard NE, Dillard DA (1997) A test method for accelerated humidity conditioning and estimation of adhesive bond durability. J Adhes 60(1–4):153–162

    Article  Google Scholar 

  • Dannenberg H (1961) Measurement of adhesion by a blister method. J Appl Polym Sci 5:125–134

    Article  Google Scholar 

  • DeBoer MP, Gerberich WW (1996a) Microwedge indentation of the thin film fine line. 1. Mechanics. Acta Mater 44(8):3169–3175

    Article  Google Scholar 

  • DeBoer MP, Gerberich WW (1996b) Microwedge indentation of the thin film fine line. 2. Experiment. Acta Mater 44(8):3177–3187

    Article  Google Scholar 

  • deBoer MP, Kriese M, Gerberich WW (1997a) Investigation of a new fracture mechanics specimen for thin film adhesion measurement. J Mater Res 12(10):2673–2685

    Article  Google Scholar 

  • deBoer MP, Nelson JC, Gerberich WW (1997b) Mechanics of interfacial crack propagation in microscratching. Thin Films: Stresses Mech Properties Vi 436:103–108

    Google Scholar 

  • Dillard DA (2002) Fundamentals of stress transfer in bonded systems. In: Dillard DA, Pocius AV (eds) Adhesion science and engineering I: the mechanics of adhesion, vol 1. Elsevier, Amsterdam, pp 1–44

    Google Scholar 

  • Dillard DA, Bao Y (1991) The peninsula blister test – a high and constant strain-energy release rate fracture specimen for adhesives. J Adhes 33(4):253–271

    Article  Google Scholar 

  • Dillard D, Parvatareddy H, Clifton AP (1995). Environmental stress cracking In high performance adhesives and composites. Antec 95 – the plastics challenger: a revolution in education, conference proceedings, Vols I-Iii–Vol I: Processing; Vol Ii: Materials; Vol Iii: Special areas, pp 3971–3975

    Google Scholar 

  • Dillard DA, Chen B, Chang TN, Lai YH (1999) Analysis of the notched coating adhesion test. J Adhes 69(1–2):99–120

    Article  Google Scholar 

  • Dillard DA, Mallick A, Ohanehi DC, Yu J-H, Lefebvre DR (2008) A high precision experimental method to determine Poisson's ratios of encapsulant gels. J Electron Packag Trans ASME 130(Compendex):0310061–0310067

    Google Scholar 

  • Farris RJ, Bauer CL (1988) A self-delamination method of measuring the surface-energy of adhesion of coatings. J Adhes 26(4):293–300

    Article  Google Scholar 

  • Fernando M, Kinloch AJ (1990) Use of the inverted-blister test to study the adhesion of photopolymers. Int J Adhes Adhes 10(2):69–76

    Article  Google Scholar 

  • Fernando M, Kinloch AJ, Vallerschamp RE, Vanderlinde WB (1993) The use of the inverted-blister test to measure the adhesion of an Electrocoated paint layer adhering to a steel substrate (Vol 12, Pg 875, 1993). J Mater Sci Lett 12(16):U1243–U1243

    Article  Google Scholar 

  • Fischer-Cripps AC (2000) A review of analysis methods for sub-micron indentation testing. Vacuum 58(4):569–585

    Article  Google Scholar 

  • Freund LB, Suresh S (2010) Thin film materials: stress, defect formation and surface evolution. Cambridge, Cambridge University Press

    Google Scholar 

  • Freund LB, Floro JA, Chason E (1999) Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl Phys Lett 74(14):1987–1989

    Article  Google Scholar 

  • Gent AN, Kaang S (1986) Pull-off forces for adhesive tapes. J Appl Polym Sci 32:4689–4700

    Article  Google Scholar 

  • Gent AN, Lewandowski LH (1987) Blow-off pressures for adhering layers. J Appl Polym Sci 33(5):1567–1577

    Article  Google Scholar 

  • Gent AN, Wang C (1991) Fracture-mechanics and cavitation in rubber-like solids. J Mater Sci 26(12):3392–3395

    Article  Google Scholar 

  • Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 11:A17–A27

    Google Scholar 

  • Hencky H (1915) Ãœber den spannungszustand in kreisrunden platten mit verschwindender biegungssteiflgkeit. Zeitschrift fur Mathematik und Physik 63:311–317

    MATH  Google Scholar 

  • Hutchinson JW, Suo Z (1992) Mixed-mode cracking in layered materials. Adv Appl Mech 29(29):63–191

    MATH  Google Scholar 

  • Hutchinson JW, He MY, Evans AG (2000) The influence of imperfections on the nucleation and propagation of buckling driven delaminations. J Mech Phys Solids 48(4):709–734

    Article  MATH  Google Scholar 

  • Jiang KR, Penn LS (1990) Use of the Blister test to study the adhesion of brittle materials.1. Test modification and validation. J Adhes 32(4):203–216

    Article  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman and Hall, London

    Book  Google Scholar 

  • Kinloch AJ, Williams JG (2002) The mechanics of peel tests. In: Dillard DA, Pocius AV (eds) The mechanics of adhesion, vol 1. Elsevier, Amsterdam, pp 273–302

    Google Scholar 

  • Kinloch AJ, Lau CC, Williams JG (1994) The peeling of flexible laminates. Int J Fract 66(1):45–70

    Article  Google Scholar 

  • Kinloch AJ, Hadavinia H, Kawashita L, Moore DR, Williams JG (2006) A numerical analysis of the elastic-plastic peel test. Engineering Fracture Mechanics 73:2324–2335. (Copyright 2006, The Institution of Engineering and Technology)

    Article  Google Scholar 

  • Klosowski J, Wolf AT (2015) Sealants in construction. Boca Raton:CRC Press

    Google Scholar 

  • Lacombe R (2006) Adhesion measurement methods: theory and practice. CRC Press, Boca Raton

    Google Scholar 

  • Lai YH, Dillard DA (1990a) An elementary plate-theory prediction for strain-energy release rate of the constrained blister test. J Adhes 31(2–4):177–189

    Article  Google Scholar 

  • Lai YH, Dillard DA (1990b) Numerical-analysis of the constrained blister test. J Adhes 33(1–2):63–74

    Article  Google Scholar 

  • Lai YH, Dillard DA (1994) A study of the fracture efficiency parameter of blister tests for films and coatings. J Adhes Sci Technol 8(6):663–678

    Article  Google Scholar 

  • Lai YH, Dillard DA (1996) A comparison of energy release rates in different membrane blister and peel tests. J Adhes 56(1–4):59–78

    Article  Google Scholar 

  • Lai YH, Dillard DA, Thornton JS (1992) The effect of compressibility on the stress distributions in thin elastomeric blocks and annular bushings. J Appl Mech-Trans Asme 59(4):902–908

    Article  Google Scholar 

  • Lakrout H, Sergot P, Creton C (1999) Direct observation of cavitation and fibrillation in a probe tack experiment on model acrylic pressure-sensitive-adhesives. J Adhes 69(3–4):307–359

    Article  Google Scholar 

  • Li YQ, Dillard DA, Lai YH, Case SW, Ellis MW, Budinski MK, Gittleman CS (2012) Experimental measurement of stress and strain in Nafion membrane during hydration cycles. J Electrochem Soc 159(2):B173–B184

    Article  Google Scholar 

  • Liechti KM, Liang YM (1992) The interfacial fracture characteristics of Bimaterial and sandwich blister specimens. Int J Fract 55(2):95–114

    Article  Google Scholar 

  • Liechti KM, Shirani A (1994) Large-scale yielding in blister specimens. Int J Fract 67(1):21–36

    Article  Google Scholar 

  • Lindley, P. B. (1971). Ozone attack at a rubber- metal bond. J Institution Rubber Industry 5(6): 243-248

    Google Scholar 

  • Lindsey GH (1967) Triaxial Fracture Studies. J Appl Phys 38(12):4843–4852

    Article  Google Scholar 

  • Maugis D (1999) Contact, adhesion and rupture of elastic solids. Springer, Heidelberg

    MATH  Google Scholar 

  • Moidu AK, Sinclair AN, Spelt JK (1995) Analysis of the peel test – prediction of adherend plastic dissipation and extraction of fracture energy in metal-to-metal adhesive joints. J Test Eval 23(4):241–253

    Article  Google Scholar 

  • Moidu AK, Sinclair AN, Spelt JK (1998a) Adhesive joint durability assessed using open-faced peel specimens. J Adhes 65(1–4):239–257

    Article  Google Scholar 

  • Moidu AK, Sinclair AN, Spelt JK (1998b) On the determination of fracture energy using the peel test. J Test Eval 26(3):247–254

    Article  Google Scholar 

  • Motamed A, Bhasin A, Liechti KM (2014) Using the poker-chip test for determining the bulk modulus of asphalt binders. Mech Time-Depend Mater 18(1):197–215

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Oliver WC, Pharr GM (2010) Nanoindentation in materials research: past, present, and future. MRS Bull 35(11):897–907

    Article  Google Scholar 

  • Oroshnik J, Croll WK (1978) Threshold adhesion failure. An approach to aluminum thin-film adhesion measurement using the stylus method. In: Adhesion measurement of thin films, thick films and bulk coatings., 2–4 Nov 1976. ASTM, Philadelphia

    Google Scholar 

  • Packham DE (ed) (2005) Handbook of adhesion. Wiley, Chichester

    Google Scholar 

  • Plaut RH, Ritchie JL (2004) Analytical solutions for peeling using beam-on-foundation model and cohesive zone. J Adhes 80(4):313–331

    Article  Google Scholar 

  • Pocius AV (1997) Adhesion and adhesives technology: an introduction. Hanser, Munich

    Google Scholar 

  • Rightmire, G. K. (1970). Experimental method for determining Poisson's ratio of elastomers. J of Lubrication Tech 92 Ser F(3): 381-388

    Google Scholar 

  • Ritter JE, Lardner TJ, Rosenfeld L, Lin MR (1989) Measurement of adhesion of thin polymer-coatings by indentation. J Appl Phys 66(8):3626–3634

    Article  Google Scholar 

  • Ritter JE, Sioui DR, Lardner TJ (1992) Indentation behavior of polymer-coatings on glass. Polym Eng Sci 32(18):1366–1371

    Article  Google Scholar 

  • Sarin VK (1995) Micro-scratch Test for Adhesion Evaluation of Thin Films. In: Mittal KL (ed) Adhesion Measurement of Films and Coatings. VSP, Utrecht, p 175

    Google Scholar 

  • Shephard N (2002) Stresses and fracture of elastomeric bonds. In: Dillard DA, Pocius AV (eds) Adhesion science and engineering-I: the mechanics of adhesion, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc A82:172–175

    Article  Google Scholar 

  • Tabor D (2000) The hardness of metals. Oxford University Press, London

    Google Scholar 

  • Timoshenko SP (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11:233–255

    Article  Google Scholar 

  • Tizard GA, Dillard DA, Norris AW, Shephard N (2012) Development of a high precision method to characterize Poisson's ratios of Encapsulant gels using a flat disk configuration. Exp Mech 52(9):1397–1405

    Article  Google Scholar 

  • Townsend BW, Ohanehi DC, Dillard DA, Austin SR, Salmon F, Gagnon DR (2011a) Characterizing acrylic foam pressure sensitive adhesive tapes for structural glazing applications-part I: DMA and ramp-to-fail results. Int J Adhes Adhes 31(7):639–649

    Article  Google Scholar 

  • Townsend BW, Ohanehi DC, Dillard DA, Austin SR, Salmon F, Gagnon DR (2011b) Characterizing acrylic foam pressure sensitive adhesive tapes for structural glazing applications-part II: creep rupture results. Int J Adhes Adhes 31(7):650–659

    Article  Google Scholar 

  • Townsend B, Ohanehi DC, Dillard DA, Austin SR, Salmon F, Gagnon DR (2012) Developing a simple damage model for the long-term durability of structural glazing adhesive subject to sustained wind loading. J Archit Eng 18(3):214–222

    Article  Google Scholar 

  • Wan KT (1999) Fracture mechanics of a V-peel adhesion test – transition from a bending plate to a stretching membrane. J Adhes 70(3–4):197–207

    Article  Google Scholar 

  • Wan KT, Lim SC (1998) The bending to stretching transition of a pressurized blister test. Int J Fract 92(4):L43–L47

    Article  Google Scholar 

  • Wan KT, Mai YW (1996) Fracture mechanics of a shaft-loaded blister of thin flexible membrane on rigid substrate. Int J Fract 74(2):181–197

    Article  Google Scholar 

  • Wan KT, Guo S, Dillard DA (2003) A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425(1–2):150–162

    Article  Google Scholar 

  • Williams ML (1969) Continuum interpretation for fracture and adhesion. J Appl Polym Sci 13(1):29–40

    Article  Google Scholar 

  • Williams JG (1997) Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int J Fract 87(3):265–288

    Article  Google Scholar 

  • Xu DW, Liechti KM, de Lumley-Woodyear TH (2006) Closed form nonlinear analysis of the peninsula blister test. J Adhes 82(8):831–866

    Article  Google Scholar 

  • Yu JH, Dillard DA, Lefebvre DR (2001) Pressure and shear stress distributions of an elastomer constrained by a cylinder of finite length. Int J Solids Struct 38(38–39):6839–6849

    Article  MATH  Google Scholar 

  • Yu JH, Guo S, Dillard DA (2003) Bimaterial curvature measurements for the CTE of adhesives: optimization, modeling, and stability. J Adhes Sci Technol 17(2):149–164

    Article  Google Scholar 

  • Zosel A (1998) Effect of fibrillation on the tack of pressure sensitive adhesives. Int J Adhes Adhes 18(Compendex):265–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Dillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Dillard, D.A., Yamaguchi, T. (2017). Special Tests. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_22-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_22-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics