Skip to main content

Physical Properties

  • Living reference work entry
  • First Online:
  • 320 Accesses

Abstract

A number of physical properties are relevant and important for characterizing adhesives, providing insights into the underlying behavior of the base polymer(s) as well as the effects that fillers, additives, and other factors may play on the behavior of the uncured adhesive, and also the quality and performance of bonded joints that may result. Characterizing these adhesive properties, interpreting the results, and understanding the implications provide important insights for assuring quality control, for improving bond performance, for assessing the relative merits of adhesive options for a given application, and for understanding the polymer more completely. This chapter addresses several relevant physical properties of bulk adhesives, including viscosity, density, and stress-strain behavior. Methods of characterizing these properties are discussed, along with insights for interpreting these quantities and their implications for polymeric adhesive systems.

This is a preview of subscription content, log in via an institution.

References

  • ASTM-D1084-08 (2008) Standard test methods for viscosity of adhesives. ASTM, West Conshohoken

    Google Scholar 

  • ASTM-D1337-96 (2001) Storage life of adhesives by consistency and bond strength. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D1338-99 (2001) Working life of liquid or paste adhesives by consistency and bond strength. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D1505-03 (2003) Standard test method for density of plastics by the density-gradient technique. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D1875-03 (2003) Standard test method for density of adhesives in fluid form. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D2556-93a (2001) Standard test method for adhesives having shear-rate-dependent flow properties. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D3236 (2001) Standard test method for apparent Viscosity of hot-melt adhesives and coating materials. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D4499-95 (2001) Standard test method for heat stability of hot-melt adhesives. ASTM, West Conshohocken

    Google Scholar 

  • ASTM-D6226 (2005) Standard test method for open cell content of rigid cellular plastics. ASTM, West Conshohocken

    Google Scholar 

  • Berker A (2002) Rheology for adhesion science and technology. In: Dillard DA, Pocius AV (eds) Adhesion Science and engineering – I: the mechanics of adhesion, vol 1. Elsevier, Amsterdam, pp 443–498

    Google Scholar 

  • Bird RB, Armstrong RC, Hassager L (1987) Dynamics of polymeric liquids: fluid mechanics. Wiley, New York

    Google Scholar 

  • Brinson HF, Brinson CL (2007) Polymer engineering science and viscoelasticity: an introduction. Springer, New York

    MATH  Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity: an introduction. Academic Press, New York

    Google Scholar 

  • Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(Copyright 1986, IEE):232–244

    Article  Google Scholar 

  • Dillard DA, Mallick A, Ohanehi DC, Yu JH, Lefebvre DR (2008) A high precision experimental method to determine poisson’s ratios of encapsulant gels. J Electron Packag 130(3):0310061

    Article  Google Scholar 

  • Dowling N (2007) Mechanical behavior of materials. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Goodwin JW, Hughes RW (2000) Rheology for chemists: an introduction. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Han CD (2007) Rheology and processing of polymeric materials: volume I: polymer rheology. Oxford University Press, Oxford

    Google Scholar 

  • ISO-1183-1:2004 (2004) Plastics – methods for determining the density of non-cellular plastics – part 1: immersion method, liquid pyknometer method and titration method. International Standards Organization, Geneva

    Google Scholar 

  • Kholodovych V, Welsh WJ (2007) Densities of amorphous and crystalline polymers. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York

    Google Scholar 

  • Knauss WG, Emri I (1987) Volume change and the nonlinearly Thermoviscoelastic constitution of polymers. Polym Eng Sci 27(1):86–100

    Article  Google Scholar 

  • Kovacs A (1964) Glass transition in amorphous polymers: a phenomenological study. Adv Polym Sci 3:394–507

    Article  Google Scholar 

  • Lai YH, Dillard DA, Thornton JS (1992) The effect of compressibility on the stress distributions in thin elastomeric blocks and annular bushings. J Appl Mech Trans Asme 59(4):902–908

    Article  Google Scholar 

  • Larson RD (1988) Constitutive equations for polymer melts and solutions. Butterworths, Stoneham

    Google Scholar 

  • Macosko CW (1994) Rheology – principles, measurements and applications. Wiley, New York

    Google Scholar 

  • Mark JE (ed) (2007) Physical properties of polymers handbook. Springer, New York

    Google Scholar 

  • Matsuoka S (1992) Relaxation phenomena in polymers. Hanser, Munich

    Google Scholar 

  • Orwoll RA (2007) Densities, coefficients of thermal expansion, and Compressibilities of amorphous polymers. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York

    Google Scholar 

  • Osswald TA, Menges G (1995) Materials science of polymers for engineers. Hanser Publishers, Munich

    Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley, Hoboken

    Book  Google Scholar 

  • Struik LCE (1978) Physical aging in amorphous polymers and other materials. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Tizard GA, Dillard DA, Norris AW, Shephard N (2012) Development of a high precision method to characterize Poisson’s ratios of encapsulant gels using a flat disk configuration. Exp Mech 52(9):1397–1405

    Article  Google Scholar 

  • van Krevelen DW (1997) Physical properties of polymers: their correlation with chemical structure: their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Google Scholar 

  • Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, Chichester, West Sussex

    Google Scholar 

  • Yu JH, Dillard DA, Lefebvre DR (2001) Pressure and shear stress distributions of an elastomer constrained by a cylinder of finite length. Int J Solids Struct 38(38–39):6839–6849

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Dillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Dillard, D.A. (2017). Physical Properties. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_17-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_17-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics