Advertisement

Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia

  • Ryszard Międzybrodzki
  • Naomi Hoyle
  • Fikria Zhvaniya
  • Marzanna Łusiak-Szelachowska
  • Beata Weber-Dąbrowska
  • Małgorzata Łobocka
  • Jan Borysowski
  • Zemphira Alavidze
  • Elizabeth Kutter
  • Andrzej Górski
  • Lasha Gogokhia
Living reference work entry

Abstract

The George Eliava Institute of Bacteriophages, Microbiology and Virology (IBMV) in Tbilisi, Georgia; the Hirszfeld Institute of Immunology and Experimental Therapy in Wroclaw, Poland; and various centers and companies in Russia, together, have a long history of clinical phage therapy use. With a revived interest in phage therapy, attention has turned to these long-standing centers and their wealth of hands-on experience. The Eliava Institute has been the leader in bacteriophage research and therapy since Soviet times. In accord with the growing antibiotic crisis, some of the important ongoing research at the Eliava Institute has focused on pathogens such as Acinetobacter, MRSA, and Pseudomonas. Genetic characterization of Georgian cocktails has supported their safety in clinical use. More recently, Georgian clinical research has focused on chronic wound, urological, and lung infections. The Eliava Phage Therapy Center is central to coordinating the expertise of Eliava scientists with the increasing demand for treatment of antibiotic-resistant infections with phage. The Hirszfeld Institute’s research has focused on expansion of their rich phage collection and development of optimized phage preparations including starting a collection of plasmid- and prophage-free hosts for phage stock preparation. Polish research has given some potential insight into important aspects of clinical tolerability, immunogenicity, and treatment of antibiotic-resistant infections. The Phage Therapy Unit of the Hirszfeld Institute has provided an in-depth analysis of clinical results through extensive observational studies. Bacteriophage preparations are registered medicines in Russia. Their use in clinical practice is well established, but there is no single center there dedicated to phage therapy. Multiple studies from different institutions focus on prophylactic use of phage for chronic conditions in the areas of ENT, gynecology, and urology. All of the research correlates with a positive tendency for phage therapy safety and efficacy. As there is an overwhelming need for effective alternatives to antibiotics, an important distinguishing aspect of phage therapy as just such an alternative is this ongoing and historical clinical use of phage therapy in these three countries, as reviewed in this chapter.

References

  1. Abedon TS, Garcia P, Mullany P, Aminov R (2017) Phage therapy: past, present and future. Front Microbiol 8:981CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akhverdian VZ, Khrenova EA, Bogush VG, Gerasimova TV, Kirsanov NB (1984) Wide distribution of transposable phages in natural Pseudomonas aeruginosa populations. Genetika 20: 1612–1619PubMedGoogle Scholar
  3. Akimkin V, Alimov A, Polyakov V (2016) Epidemiological efficiency of use of bacteriophages for prevention of acute respiratory bacterial infections in organized groups. Bacteriology 1(1): 80–87CrossRefGoogle Scholar
  4. Allegranzi A, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D (2010) Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet 377(9761):228–241CrossRefPubMedGoogle Scholar
  5. Asavarut P, Hajitou A (2014) The phage revolution against antibiotic resistance. Lancet Infect Dis 14:686CrossRefGoogle Scholar
  6. Bair CL, Black LW (2007) A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J Mol Biol 366:768–778CrossRefPubMedGoogle Scholar
  7. Belopol’skaya KH, Sidorova I, Shakhgireeva L, Belopol’skiy A (2014) Perspectives of phage therapy for gynecological infections. J Difficult Patient 9:6–8Google Scholar
  8. Berchieri A Jr, Lovell MA, Barrow PA (1991) The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res Microbiol 142:541–549CrossRefPubMedGoogle Scholar
  9. Bossi L, Fuentes JA, Mora G, Figueroa-Bossi N (2003) Prophage contribution to bacterial population dynamics. J Bacteriol 185:6467–6471CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 82:91–118CrossRefPubMedGoogle Scholar
  11. Budanov P, Novakhova ZH, Kabisashvili M (2015) Alternative of antibacterial treatment in obstetrics and gynecology. Russ Med J 1:14–18Google Scholar
  12. Califf RM, Ostroff S (2015) FDA as a catalyst for translation. Sci Transl Med 7:296ed9CrossRefPubMedGoogle Scholar
  13. Chanishvili N (2012) Phage therapy – history from Twort and d’Herelle through soviet experience to current approaches. Adv Virus Res 83:3–40CrossRefPubMedGoogle Scholar
  14. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 16:239–251CrossRefPubMedGoogle Scholar
  15. Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K, Owczarek B, Lecion D, Kaźmierczak Z, Letarov A, Górski A (2014) Immunogenicity studies of proteins forming the T4 phage head surface. J Virol 88:12551–12557CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dempsey RM, Carroll D, Kong H, Higgins L, Keane CT, Coleman DC (2005) Sau42I, a BcgI-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage Phi42. Microbiology 151:1301–1311CrossRefPubMedGoogle Scholar
  17. Dodova E, Gorbunova E, Apolikhina I (2015) Phage therapy: a novel therapeutic strategy of the postantibiotic era. J Med Counc 11:49–53Google Scholar
  18. Dyer DW, Rock MI, Lee CY, Iandolo JJ (1985) Generation of transducing particles in Staphylococcus aureus. J Bacteriol 161:91–95PubMedPubMedCentralGoogle Scholar
  19. Expert round table (2016) Silk route to the acceptance and re-implementation of bacteriophage therapy. Biotechnol J 11(5):595–600CrossRefGoogle Scholar
  20. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 27(Suppl 7):S27–S33CrossRefGoogle Scholar
  21. Gill JJ, Young R (2011) Therapeutic applications of phage biology: history, practice and recommendations. In: Miller AA, Miller PF (eds) Emerging trends in antibacterial discovery: answering the call to arms. Caister Academic Press, Norfolk, pp 387–410Google Scholar
  22. Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, Bröker BM, Doskar J, Wolz C (2009) Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 191:3462–3468CrossRefPubMedPubMedCentralGoogle Scholar
  23. Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, Ohams M, Korczak-Kowalska G, Olszowska-Zaremba N, Łusiak-Szelachowska M, Kłak M, Jończyk E, Kaniuga E, Gołaś A, Purchla S, Weber-Dąbrowska B, Letkiewicz S, Fortuna W, Szufnarowski K, Pawełczyk Z, Rogoż P, Kłosowska D (2012a) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83:41–71Google Scholar
  24. Górski A, Weber-Dąbrowska B, Międzybrodzki R, Stefański G, Dechnik K, Olchawa E (2012b) A method for obtaining bacteriophage purified preparations. Polish patent No. PL 212811 B1, issued 11 Nov 2012Google Scholar
  25. Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Rogóż P, Jończyk-Matysiak E, Dąbrowska K, Majewska J, Borysowski J (2016) Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515CrossRefPubMedPubMedCentralGoogle Scholar
  26. Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57(12):5961–5968CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hirszfeld L (1949) Immunologia ogólna [General immunology]. Czytelnik, WarsawGoogle Scholar
  28. Hirszfeld L, Galis-Malejczyk A, Sembrat-Niewiadowska Z, Zwierz C (1948) Bakteriofagi i ich rola w rozpoznawaniu duru brzusznego [Bacteriophages and their role in the diagnosis of typhoid fever]. Pol Tyg Lek 14:417–423Google Scholar
  29. Holloway BW, Egan JB, Monk M (1960) Lysogeny in Pseudomonas aeruginosa. Aust J Exp Biol Med Sci 38:321–329CrossRefPubMedGoogle Scholar
  30. Iida S, Meyer J, Arber W (1981) Cointegrates between bacteriophage P1 DNA and plasmid pBR322 derivatives suggest molecular mechanisms for P1-mediated transduction of small plasmids. Mol Gen Genet 184:1–10CrossRefPubMedGoogle Scholar
  31. Islanov B (2016) Bacteriophage as effective antibacterial remedies. J Med Counc 10:3–19Google Scholar
  32. Iversen H, L’Abée-Lund TM, Aspholm M, Arnesen LP, Lindbäck T (2015) Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol 5:5CrossRefPubMedPubMedCentralGoogle Scholar
  33. Iyer LM, Zhang D, Burroughs AM, Aravind L (2013) Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 41:7635–7655CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J (2011) The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elem 1:55–65CrossRefGoogle Scholar
  35. Jasieński J (1927) Próby zastosowania bakteriofagji w chirurgji [Practical application of bacteriophages in surgery]. Pol Gaz Lek 4:67–73Google Scholar
  36. Jikia D, Chkhaidze N, Imedashvili E, Mgaloblishvili I, Tsitlanadze G, Katsarava R, Glenn Morris J, Sulakvelidze A (2005) The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol 30(1):23–26CrossRefPubMedGoogle Scholar
  37. Kalinowski W, Czyż J (1923) Sprawozdanie z epidemji czerwonki w roku 1922 [Report from the treatment of diarrhoea epidemics in 1922]. Lekarz Wojsk 4:286–293Google Scholar
  38. Keen EC, Adhya SL (2015) Phage therapy: current research and applications. Clin Infect Dis 61:141–142CrossRefPubMedCentralGoogle Scholar
  39. Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN, Thomas L, Chapman SJ, Dublanchet A, Smithyman A, Iredell JR (2011) Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 60:1697–1700CrossRefPubMedGoogle Scholar
  40. Kiselyova I (2015) Specialized bacteriophage cocktail-based product for dietary prophylactic nutrition: design, production technology, safety and efficiency assessment: Ext. Abstr. of Cand. Sci. (Biology) Diss. Moscow. p 27Google Scholar
  41. Kong J, Josephsen J (2002) The ability of the plasmid-encoded restriction and modification system LlaBIII to protect Lactococcus lactis against bacteriophages. Lett Appl Microbiol 34:249–253CrossRefPubMedGoogle Scholar
  42. Kostrzewski J, Mulczyk M, Ślopek S (1974) Próby zapobiegania zakażeniom czerwonkowym w zbiorowiskach ludzi z pomocą wieloważnych bakteriofagów czerwonkowych S. flexneri i S. sonnei. Przegl Epidemiol 27:483–507Google Scholar
  43. Kucharewicz-Krukowska A, Ślopek S (1987) Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch Immunol Ther Exp 35:553–561Google Scholar
  44. Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 74:621–641CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kusradze I, Karumidze N, Rigvava S, Dvalidze T, Katsitadze M, Amiranashvili I, Goderdzishvili M (2016) Characterization and testing the efficacy of Acinetobacter baumannii phage vB-GEC_Ab-M-G7 as an antibacterial agent. Front Microbiol 7:1590CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kutateladze M (2015) Experience of the Eliava Institute in bacteriophage therapy. Virol Sin 30(1):80–81CrossRefPubMedGoogle Scholar
  47. Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava Institute. Med Mal Infect 38(8):426–430CrossRefPubMedGoogle Scholar
  48. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595CrossRefPubMedGoogle Scholar
  49. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon S (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86CrossRefPubMedGoogle Scholar
  50. Kutter EM, Kuhl SJ, Abedon ST (2015) Re-establishing a place for phage therapy in western medicine. Future Microbiol 10:685–688CrossRefPubMedGoogle Scholar
  51. Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4(5): 643–650CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M (2017) Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 168:194–207Google Scholar
  53. León M, Santander J, Curtiss R 3rd, Robeson J (2013) Natural lysogenization and transduction in Salmonella enterica serovar Choleraesuis by bacteriophage P1. Res Microbiol 164:1–5CrossRefPubMedGoogle Scholar
  54. Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A (2012) Genomics of Staphylococcal Twort-like phages – potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216CrossRefPubMedGoogle Scholar
  55. Łobocka M, Hejnowicz M S, Gągała U, Weber-Dąbrowska B, Węgrzyn G, Dadlez M (2014) The first step to bacteriophage therapy – how to choose the correct phage. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage Therapy. Current Research and Applications. Caister Academic Press, Norfolk, pp 23–69Google Scholar
  56. Łobocka M, Hejnowicz MS, Dąbrowski K, Izak D, Gozdek A, Głowacka A, Gawor J, Kosakowski J, Gromadka R, Weber-Dąbrowska B, Górski A (2016a) S. aureus strains for the production of monoclonal bacteriophage preparations deprived of plasmid DNA. Patent application No. PCT/IB2015/056606, publication No. WO2016/030871 A1Google Scholar
  57. Łobocka M, Gozdek A, Izak D, Zalewska A, Gawor J, Dbrowski K, Gromadka R, Weber-Dbrowska B, Górski A (2016b) E. faecalis strains for the production of monoclonal bacteriophage preparations. Patent application No. PCT/IB2015/056607, publication No. WO2016/030872 A1Google Scholar
  58. Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42:3–19CrossRefPubMedGoogle Scholar
  59. Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Kłak M, Fortuna W, Letkiewicz S, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, Owczarek B, Górski A (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol 27:295–304CrossRefPubMedPubMedCentralGoogle Scholar
  60. Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Kłak M, Międzybrodzki R, Fortuna W, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, Górski A (2016) Antiphage activity of sera from patients receiving Staphylococcal phage preparations. In: Méndez-Vilas A (ed) Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. BrownWalker Press, Boca Raton, pp 245–249Google Scholar
  61. Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Letkiewicz S, Fortuna W, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, Olchawa E, Walaszek KM, Górski A (2017) Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol 12:109–117CrossRefPubMedGoogle Scholar
  62. Mann BA, Slauch JM (1997) Transduction of low-copy number plasmids by bacteriophage P22. Genetics 146:447–456PubMedPubMedCentralGoogle Scholar
  63. Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41(7):453–458CrossRefPubMedGoogle Scholar
  64. Mašlaňová I, Stříbná S, Doškař J, Pantůček R (2016) Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiol Lett 363:fnw211CrossRefPubMedGoogle Scholar
  65. Merabishvili M, De Vos D, Verbeken G, Kropinski AM, Vandenheuvel D, Lavigne R, Wattiau P, Mast J, Ragimbeau C, Mossong J, Scheres J, Chanishvili N, Vaneechoutte M, Pirnay JP (2012) Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. PLoS One 7(12):e52709CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mercenier A, Slos P, Faelen M, Lecocq JP (1988) Plasmid transduction in Streptococcus thermophilus. Mol Gen Genet 212:386–389CrossRefPubMedGoogle Scholar
  67. Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E, Górski A (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121CrossRefPubMedGoogle Scholar
  68. Międzybrodzki R, Kłak M, Jończyk-Matysiak E, Bubak B, Wójcik A, Kaszowska M, Weber-Dąbrowska B, Łobocka M, Górski A (2017a) Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80. Front Microbiol 8:467PubMedPubMedCentralGoogle Scholar
  69. Międzybrodzki R, Weber-Dąbrowska B, Letkiewicz S, Fortuna W, Rogóż P, Górski A (2017b) Phage therapy: the Polish experience [abstract]. In: Abstract book of the 22nd biennial evergreen international phage meeting, Olympia, 5–11 Aug, p 57Google Scholar
  70. Ministry of Economic Development of the Russian Federation (2012) Комплексная программа развития биотехнологий в Российской Федерации на период до 2020 года (утв. Правительством РФ от 24 апреля 2012 г. N 1853п-П8) (The Comprehensive Program for Development of Biotechnology in the Russian Federation through 2020). http://static.government.ru/media/files/41d4e85f0b854eb1b02d.pdf. Accessed 17 Mar 2016
  71. Moriarty TF, Kuehl R, Coenye T, Metsemakers WJ, Morgenstern M, Schwarz EM, Riool M, Zaat SAJ, Khana N, Kates SL, Richards RG (2017) Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 1(4):89–99CrossRefPubMedGoogle Scholar
  72. Mulczyk M, Slopek S, Marcinowska H (1967) Znaczenie swoistego bakteriofaga w zwalczaniu nosicielstwa pałeczek Shigella flexneri 6 [Role of specific bacteriophage in the control of the carrier state of Shigella flexneri 6 bacilli]. Przegl Epidemiol 21:179–182PubMedGoogle Scholar
  73. Nemudraya AA, Richter V, Kuligina E (2016) Phage peptide libraries as a source of targeted ligands. Acta Nat 8 1(28):52–63Google Scholar
  74. Nirmal Kumar GP, Sundarrajan S, Paul VD, Nandini S, Saravanan RS, Hariharan S, Sriram B, Padmanabhan S (2012) Use of prophage free host for achieving homogenous population of bacteriophages: new findings. Virus Res 169:182–187CrossRefPubMedGoogle Scholar
  75. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, Stappenbeck TS, McGovern DP, Keshavarzian A, Mutlu EA, Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW (2015) Disease specific alterations in the enteric virome in inflammatory bowel disease. Cell 160(3):447–460CrossRefPubMedPubMedCentralGoogle Scholar
  76. Novakhova ZH, Bydanov P, Strizhakov A, Churganova A (2014) Modern opportunities for selective antibiotic treatment in obstetrics and gynecology. J Difficult Patient 12:36–39Google Scholar
  77. Novick RP, Edelman I, Lofdahl S (1986) Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J Mol Biol 192:209–220CrossRefPubMedGoogle Scholar
  78. Oliveira PH, Touchon M, Rocha EP (2014) The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 42:10618–10631CrossRefPubMedPubMedCentralGoogle Scholar
  79. Payne RJ, Jansen VA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208:37–48Google Scholar
  80. Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, Zizi M, Laire G, Lavigne R, Huys I, Van den Mooter G, Buckling A, Debarbieux L, Pouillot F, Azeredo J, Kutter E, Dublanchet A, Górski A, Adamia R (2011) The phage therapy paradigm: Prêt-à-Porter or Sur-mesure. Pharm Res 28(4):934–937CrossRefPubMedGoogle Scholar
  81. Rao DN, Dryden DT, Bheemanaik S (2014) Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 42:45–55CrossRefPubMedGoogle Scholar
  82. Raya RR, Kleeman EG, Luchansky JB, Klaenhammer TR (1989) Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol 55:2206–2213PubMedPubMedCentralGoogle Scholar
  83. Rees CE, Dodd CE (2006) Phage for rapid detection and control of bacterial pathogens in food. Adv Appl Microbiol 59:159–186CrossRefPubMedGoogle Scholar
  84. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081CrossRefPubMedGoogle Scholar
  85. Sahota JS, Smith CM, Radhakrishnan P, Winstanley C, Goderdzishvili M, Chanishvili N, Kadioglu A, O’Callaghan C, Clokie MRJ (2015) Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa cystic fibrosis patients. J Aerosol Med Pulm Drug Deliv 28(5):353–360CrossRefPubMedGoogle Scholar
  86. Shormanov S, Solov’ev A (2016) Clinical and microbiological efficacy of phage treatment of chronic bacterial prostatitis. Medical sciences. Clin Med N3(39):69–77Google Scholar
  87. Ślopek S, Durlakowa I, Kucharewicz-Krukowska A, Krzywy T, Ślopek A, Weber B (1972) Phage typing of Shigella flexneri. Arch Immunol Ther Exp 20:1–60Google Scholar
  88. Ślopek S, Durlakow I, Weber-Dabrowska B, Kucharewicz-Krukowska A, Dabrowski M, Bisikiewicz R (1983) Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch Immunol Ther Exp 31:267–291Google Scholar
  89. Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258–261CrossRefPubMedGoogle Scholar
  90. Stepanova N, Gevorkyan M (2015) Phage therapy in obstetrics and gynecology. J Med Counc 9(5):10–14Google Scholar
  91. Summers WC (1999) Felix d’Herelle and the origins of molecular biology. Yale University Press, New HavenGoogle Scholar
  92. Sybesma W, Zbinden R, Chanishvili N, Kutateladze M, Chkhotua A, Ujmajuridze A, Mehnert U, Kessler TM (2016) Bacteriophages as potential treatment for urinary tract infections. Front Microbiol 7:465CrossRefPubMedPubMedCentralGoogle Scholar
  93. Teifel-Greding J (1984) Transduction of multi-copy plasmid pBR322 by bacteriophage Mu. Mol Gen Genet 197:169–174CrossRefPubMedGoogle Scholar
  94. The Comprehensive Program for Development of Biotechnology in the Russian Federation through 2020 (2012). Resource document. Ministry of Economic Development of the Russian Federation. http://static.government.ru/media/files/41d4e85f0b854eb1b02d.pdf. Accessed 17 Mar 2016
  95. The State Pharmacopoeia of the Russian Federation 13th edn (2015) N2, pp 465–478Google Scholar
  96. Thiyagarajan S, Chrisolite B, Alavandi SV, Poornima M, Kalaimani N, Santiago TC (2011) Characterization of four lytic transducing bacteriophages of luminescent Vibrio harveyi isolated from shrimp (Penaeus monodon) hatcheries. FEMS Microbiol Lett 325:85–91CrossRefPubMedGoogle Scholar
  97. Ubelaker MH, Rosenblum ED (1978) Transduction of plasmid determinants in Staphylococcus aureus and Escherichia coli. J Bacteriol 133:699–707PubMedPubMedCentralGoogle Scholar
  98. Vandersteegen K, Mattheus W, Ceyssens PJ, Bilocq F, De Vos D, Pirnay JP, Noben JP, Merabishvili M, Lipinska U, Hermans K, Lavigne R (2011) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 6(9):e24418CrossRefPubMedPubMedCentralGoogle Scholar
  99. Watanabe T, Furuse C, Sakaizumi S (1968) Transduction of various R factors by phage P1 in Escherichia coli and by phage P22 in Salmonella typhimurium. J Bacteriol 96:1791–1795PubMedPubMedCentralGoogle Scholar
  100. Weber-Dąbrowska B, Mulczyk M, Górski A (2000) Bacteriophage therapy of bacterial infections: an update of our institute’s experience. Arch Immunol Ther Exp 48:547–551Google Scholar
  101. Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177PubMedPubMedCentralGoogle Scholar
  102. WHO (2017) Global priority list of antibiotic-resistant bacteria. Published 27 Feb 2017. http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  103. Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P (2011) A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 39:5597–5610Google Scholar
  104. Yamamoto S, Suzuki K (2012) Development of a reinforced Ti-eviction plasmid useful for construction of Ti plasmid-free Agrobacterium strains. J Microbiol Methods 89:53–56CrossRefPubMedGoogle Scholar
  105. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg 95(2):117–125CrossRefPubMedGoogle Scholar
  106. Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, Weber-Dąbrowska B, Międzybrodzki R, Owczarek B, Kopciuch A, Fortuna W, Rogóż P, Górski A (2016) Antibody production in response to Staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front Microbiol 7:1681PubMedPubMedCentralGoogle Scholar
  107. Zaripova T, Mukhina V, Chuikova K (2013) Substantiation of bacteriophage use in treatment of chronic laryngitis exacerbation in patient with careers involving a lot of speaking. Russ J Otorhinolaryngol 14:1008–1014. art 80Google Scholar
  108. Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K, Bendíčková K, Plevka P, Vrbovská V, Zdráhal Z, Doškař J, Pantůček R (2017) Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 7:46319CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zorkin S, Shakhnovskiy D (2013) Possibilities of bacteriophage therapy in the treatment of patients with complicated urinary tract infection. Pediatr Pharmacol N10(4):132–138CrossRefGoogle Scholar
  110. Zschach H, Joensene KG, Lindhard B, Lund O, Goderdzishvili M, Chkonia I, Jgenti G, Kvatadze N, Alavidze Z, Kutter EM, Hasman H, Larsen MV (2015) What can we learn from a metagenomics analysis of a Georgian bacteriophage cocktail? Virus 7(12):6570–6589CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ryszard Międzybrodzki
    • 1
    • 2
    • 3
  • Naomi Hoyle
    • 6
  • Fikria Zhvaniya
    • 6
  • Marzanna Łusiak-Szelachowska
    • 1
  • Beata Weber-Dąbrowska
    • 1
    • 2
  • Małgorzata Łobocka
    • 4
    • 5
  • Jan Borysowski
    • 3
  • Zemphira Alavidze
    • 7
  • Elizabeth Kutter
    • 8
  • Andrzej Górski
    • 1
    • 2
    • 3
  • Lasha Gogokhia
    • 9
  1. 1.Bacteriophage LaboratoryHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
  2. 2.Phage Therapy UnitHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
  3. 3.Department of Clinical Immunology, Transplantation InstituteMedical University of WarsawWarsawPoland
  4. 4.Autonomous Department of Microbial Biology, Faculty of Agriculture and BiologyWarsaw University of Life SciencesWarsawPoland
  5. 5.Department of Microbial Biochemistry, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
  6. 6.Eliava Phage Therapy CenterEliava FoundationTbilisiGeorgia
  7. 7.Eliava BioPreparationsTbilisiGeorgia
  8. 8.Phagebiotics Research FoundationOlympiaUSA
  9. 9.Department of Medicine, Division of Gastroenterology and HepatologyWeill Cornell MedicineNew YorkUSA

Personalised recommendations