Skip to main content

Mathematical Modeling of 3D Tissue Engineering Constructs

  • Living reference work entry
  • First Online:
3D Printing and Biofabrication

Abstract

Tissue engineering represents a new field aiming at developing biological substitutes to restore, maintain, or improve tissue functions. In this approach, scaffolds provide a temporary mechanical and vascular support for tissue regeneration while tissue ingrowth is being formed. The design of optimized scaffolds for tissue engineering applications is a key topic of research, as the complex macro- and micro-architectures required for a scaffold depends on the mechanical and vascular properties and physical and molecular queues of the surrounding tissue at the defect site. One way to achieve such hierarchical designs is to create a library of unit cells, which can be assembled through a computational tool.

Besides presenting an overview scaffold designs based hyperbolic surfaces, this chapter investigates the use of two different types of triply periodic minimal surfaces, Schwarz and Schoen, in order to design better biomimetic scaffolds with high surface-to-volume ratio, high porosity, and good mechanical properties. The effect of two parametric parameters (thickness and surface radius) is also evaluated regarding its porosity and mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida, H.A. and Bártolo, P.J. (2008) computer simulation and optimisation of tissue engineering scaffolds: mechanical and vascular behaviour”, 9th biennial ASME conference on engineering systems design and analysis (ESDA2008), Y. Halevi and A. Fischer (Eds.), ASME conference proceedings, Haifa Isreal.

    Google Scholar 

  • Almeida HA, Bártolo PJ (2012a) Chapter 12: Structural and vascular analysis of tissue engineering scaffolds: part 1 – numerical fluid analysis. In: Liebschner M, Kim D (eds) Computer-aided tissue engineering. Springer, London

    Google Scholar 

  • Almeida HA, Bártolo PJ (2012b) Chapter 13: Structural and vascular analysis of tissue engineering scaffolds: part 2 – topology optimization. In: Liebschner M, Kim D (eds) computer-aided tissue engineering. Springer, London

    Google Scholar 

  • Almeida HA, Bártolo PJ (2013) Numerical simulations of BioExtruded polymer scaffolds for tissue engineering applications. Polym Int 62(11):1544–1552

    CAS  Google Scholar 

  • Almeida HA, Bártolo PJ, Ferreira J (2007a) Mechanical behaviour and vascularisation analysis of tissue engineering scaffolds. In: Bártolo PJ et al (eds) Virtual and rapid manufacturing – Advanced research in virtual and rapid prototyping. Taylor & Francis, London, pp 73–80

    Google Scholar 

  • Almeida HA, Bártolo PJ, Ferreira J (2007b) Design of scaffolds assisted by computer. In: Brebbia CA (ed) Modelling in medicine and biology VII. Wit Press, pp 157–166

    Google Scholar 

  • Andersson S (1983) On the description of complex inorganic crystal structures. Angew Chem Int Ed 22(2):69–81

    Article  Google Scholar 

  • Andersson S, Hyde ST, Larsson K, Lidin S (1988) Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chem Rev 88:221–242

    Article  CAS  Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nature Materials 2:715–725

    Article  CAS  PubMed  Google Scholar 

  • Bártolo PJ, Almeida HA, Rezende RA, Laoui T, Bidanda B (2008) Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda B, Bártolo PJ (eds) Virtual Prototyping & bio-Manufacturing in medical applications. Springer, New York, pp 151–174

    Chapter  Google Scholar 

  • Bártolo PJ, Almeida H, Laoui T (2009a) Rapid prototyping & manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol 36(1):1–9

    Article  Google Scholar 

  • Bártolo PJ, Chua CK, Almeida HA, Chou SM, Lim ASC (2009b) Biomanufacturing for tissue engineering: present and future trends. Virtual Phys Prototyping 4(4):203–216

    Article  Google Scholar 

  • Bártolo PJ, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61(2):635–655

    Article  Google Scholar 

  • Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, Zavan B, Bressan E (2016) Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 34:740–753

    Article  CAS  PubMed  Google Scholar 

  • Dinis JC, Morais TF, Amorin PHJ, Ruben RB, Almeida HA, Inforçati PN, Bártolo PJ, Silva JVL (2014) Open source software for the automatic Design of Scaffold Structures for tissue engineering applications. Procedia Technol 16:1542–1547

    Article  Google Scholar 

  • Eshraghi S, Das S (2010) Mechanical and microstructuralproperties of polycaprolactonescaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Yusof NM (2015) A review of: application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C 48:556–565

    Article  CAS  Google Scholar 

  • Gandy PJF, Bardhan S, Mackay AL, Klinowski J (2001) Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces. Chem Phys Lett 336(3):187–195

    Article  CAS  Google Scholar 

  • Giannitelli SM, Mozetic P, Trombetta M, Rainer A (2015) Combined additive manufacturing approaches in tissue engineering. Acta Biomater 24:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399

    Article  PubMed  Google Scholar 

  • Hyde S (1996) Bicontinuous structures in lyotropic liquid crystals and crystalline hyperbolic surfaces. Curr Opin Solid State Mater Sci 1:653–662

    Article  CAS  Google Scholar 

  • Hyde ST, Oguey C (2000) From 2D hyperbolic forests to 3D Euclidean entangled thickets. Eur Phys J B 16(4):613–630

    Article  CAS  Google Scholar 

  • Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotechnol Adv 33:1503–1521

    Article  PubMed  Google Scholar 

  • Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591

    Article  CAS  Google Scholar 

  • Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, Almeida L, Tayebi L (2017) A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C 70:913–929

    Article  CAS  Google Scholar 

  • Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24

    Article  CAS  Google Scholar 

  • Jung Y, Chu KT, Torquato S (2007) A variational level set approach for surface area minimization of triply-periodic surfaces. J Comput Phys 223(2):711–730

    Article  Google Scholar 

  • Kapfer SC, Hyde ST, Mecke K, Arns CH, Schroder-Turk GE (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29):6875–6882

    Article  CAS  PubMed  Google Scholar 

  • Karcher H, Polthier K (2014) Construction of triply periodic minimal surfaces. Philos Trans R Soc Lond A 354(1715):2077–2104

    Article  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  • Larsson M, Terasaki O, Larsson K (2003) A solid state transition in the tetragonal lipid bilayer structure at the lung alveolar surface. Solid State Sci 5(1):109–114

    Article  CAS  Google Scholar 

  • Law JX, Liau LL, Aminuddin BS, Ruszymah BHI (2016) Tissue-engineered trachea: a review. Int J Pediatr Otorhinolaryngol 91:55–63

    Article  PubMed  Google Scholar 

  • Lord EA, Mackay AL (2003) Periodic minimal surfaces of cubic symmetry. Curr Sci 85(3):346–362

    Google Scholar 

  • Melchels FPW, Barradas AMC, Blitterswijk CA, Boer J, Feijen J (2010a) Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6(11):4208–4217

    Article  CAS  PubMed  Google Scholar 

  • Melchels FPW, Bertoldi K, Gabbielli R, Velders AH, Feijen J (2010b) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916

    Article  CAS  PubMed  Google Scholar 

  • Melek LN (2015) Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J 12:211–223

    Article  Google Scholar 

  • Nesper R, Leoni S (2001) On tilings and patterns on hyperbolic surfaces and their relation to structural chemistry. ChemPhysChem 2(7):413–422

    Article  CAS  PubMed  Google Scholar 

  • Osman NI, Hillary C, Bullock AJ, MacNeil S, Chapple CR (2015) Tissue engineered buccal mucosa for urethroplasty: progress and future directions. Adv Drug Deliv Rev 82–83:69–76

    Article  PubMed  Google Scholar 

  • Qi C, Wang Y (2009) Feature-based crystal construction in computer-aided nano-design. Comput Aided Des 41(11):792–800

    Article  Google Scholar 

  • Rajagopalan S, Robb RA (2006) Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal 10(5):693–712

    Article  PubMed  Google Scholar 

  • Risbud M (2001) Tissue engineering: implications in the treatment of organ and tissue defects. Biogerontology 2:117–125

    Article  CAS  PubMed  Google Scholar 

  • Scriven LE (1976) Equilibrium bicontinuous structure. Nature 263(5573):123–125

    Article  CAS  Google Scholar 

  • Selimis A, Mironov V, Farsari M (2015) Direct laser writing: principles and materials for scaffold 3D printing. Microelectron Eng 132:83–89

    Article  CAS  Google Scholar 

  • Skalak R, Fox CF (1988) Tissue Engineering. Alan R. Liss, New York

    Google Scholar 

  • Stratton, S., Shelke, N.B,. Hoshino, K., Rudraiah, S. and Kumbar S.G. (2016) “Bioactive polymeric scaffolds for tissue engineering”, Bioact Mater, 1:93–108.

    Google Scholar 

  • Sun W, Lal P (2002) Recent development on computer aided tissue engineering - a review. Comput Methods Prog Biomed 67:85–103

    Article  Google Scholar 

  • Tajbakhsh S, Hajiali F (2017) A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. Mater Sci Eng C 70:897–912

    Article  CAS  Google Scholar 

  • Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS, Wiria FE (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15:113–124

    CAS  PubMed  Google Scholar 

  • Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR (2016) Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 3:56–71

    Article  CAS  PubMed  Google Scholar 

  • Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2007) Periodic surface modeling for computer aided nano design. Comput Aided Des 39(3):179–189

    Article  Google Scholar 

  • Xue Y, Sant V, Phillippi J, Sant S (2017) Biodegradable and biomimetic elastomeric scaffolds for tissue engineered heart valves. Acta Biomater 48:2–19

    Article  CAS  PubMed  Google Scholar 

  • Yoo DJ (2011a) Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf 12(1):61–71

    Article  Google Scholar 

  • Yoo DJ (2011b) Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32(31):7741–7754

    Article  CAS  PubMed  Google Scholar 

  • Yoo DJ (2012a) Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf 13(4):527–537

    Article  Google Scholar 

  • Yoo, D.J. (2012b) Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions, Med Eng Phys 34(5):625–639

    Google Scholar 

  • Yoo DJ (2013) Heterogeneous porous scaffold design using the continuous transformations of triply periodic minimal surface models. Int J Precis Eng Manuf 14(10):1743–1753

    Article  Google Scholar 

  • Yoo DJ (2014) Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios. Int J Precis Eng Manuf 15(8):1657–1666

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Amorim Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Almeida, H.A., da Silva Bártolo, P.J. (2017). Mathematical Modeling of 3D Tissue Engineering Constructs. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-40498-1_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40498-1_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40498-1

  • Online ISBN: 978-3-319-40498-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics