Advertisement

Airborne Contact Dermatitis

  • Jean-Marie Lachapelle
Living reference work entry

Abstract

Occupational airborne irritant (frictional and/or chemical) contact dermatitis is due to fibers, dust particles, vapors, and/or gasses.

Occupational airborne allergic contact dermatitis is a common problem, provoked by a large variety of allergens.

Occupational airborne phototoxic and/or photoallergic contact dermatitis is a rare but well-documented event.

Occupational airborne immunological contact urticaria can be caused by several chemicals and/or proteins. Allergy to latex proteins was the main problem, but it is declining at the present time.

There is a vast range of procedures available to reach a proper etiological diagnosis of airborne contact dermatitis.

Prevention and treatment of airborne contact dermatitis deserve special attention and must be adapted to each individual situation.

“Extrinsic” atopic dermatitis (face and neck dermatitis) is related to the penetration into the skin of aeroallergens, particularly dust mite.

Keywords

Airborne irritant contact dermatitis Airborne allergic contact dermatitis Airborne phototoxic contact dermatitis Airborne photoallergic contact dermatitis Airborne immunological contact urticaria Dust particles “Extrinsic” atopic dermatitis Fibers Gasses Latex proteins Vapors 

References

  1. Aerts O (2017) Contact allergy caused by methylisothiazolinone and related isothiazolinones. Thesis submitted for the degree of Doctor in Medical Sciences, University of Antwerp (Belgium), 215 ppGoogle Scholar
  2. Agarwal KK, D’Souza M (2009) Airborne contact dermatitis induced by parthenium: a study of 50 cases in South India. Clin Exp Dermatol 34:4–6CrossRefGoogle Scholar
  3. Baeck M, Goossens A (2009) Patients with airborne sensitization/contact dermatitis from budesonide-containing aerosols “by proxy”. Contact Dermatitis 61:1–8CrossRefGoogle Scholar
  4. Björnberg A, Lowhagen G, Tengberg JE (1979) Relationship between intensities of skin test reactions to glass fibers and chemical irritants. Contact Dermatitis 5:171–174CrossRefGoogle Scholar
  5. Bordel-Gomez MT, Miranda-Romero A (2008) Fibreglass dermatitis: a report of 2 cases. Contact Dermatitis 59:120–122CrossRefGoogle Scholar
  6. Cao LY, Sood A, Taylor JS (2009) Hand/face/neck localized pattern: sticky problems-resins. Dermatol Clin 27:227–249CrossRefGoogle Scholar
  7. Coenraads PJ, Brouwer A, Olie K et al (1994) Chloracne. Some recent issues. Dermatol Clin 12:569–576PubMedGoogle Scholar
  8. Corazza M, Baldo F, Osti F et al (2008) Airborne allergic contact dermatitis due to budesonide from professional exposure. Contact Dermatitis 58:318–319CrossRefGoogle Scholar
  9. Cusano F, Mariano M (2007) Fiberglass dermatitis: microepidemic in a primary school. Contact Dermatitis 57:351–352CrossRefGoogle Scholar
  10. Diepgen TL (2014) Patch testing and atopic eczema. In: Lachapelle JM, Bruze M, Elsner PU (eds) Patch testing tips. Recommendations from the ICDRG. Springer, Heidelberg, pp 91–99CrossRefGoogle Scholar
  11. Dooms-Goossens A, Debusschere KM, Gevers DM et al (1986) Contact dermatitis caused by airborne agents. J Am Acad Dermatol 15:1–10CrossRefGoogle Scholar
  12. Feser A, Mahler V (2009) Periorbital dermatitis: causes, differential diagnosis and therapy. J Dtsch Dermatol Ges 8:159–166CrossRefGoogle Scholar
  13. Fisher AA (1982) Fiberglass vs. mineral wool (rockwool) dermatitis. Cutis 29:415–416Google Scholar
  14. Geraut C, Tripodi D, Brunet-Courtois B et al (2009) Occupational dermatitis to epoxydic and phenolic resins. Eur J Dermatol 19:205–213PubMedGoogle Scholar
  15. Gottschling S, Meyer S, Dill-Mueller D et al (2007) Outbreak report of airborne caterpillar dermatitis in a kindergarten. Dermatology 215:5–9CrossRefGoogle Scholar
  16. Hallai N, Gawkrodger DJ (2009) Patch testing to aeroallergens, especially house dust mite, is often positive in atopics with eczema of the face and hands. J Eur Acad Dermatol Venereol 23:728–729CrossRefGoogle Scholar
  17. Handfield-Jones SE (1998) Latex allergy in health-care workers in a English district general hospital. Br J Dermatol 138:273–276CrossRefGoogle Scholar
  18. Hsieh MY, Guo YL, Shiao JS et al (2001) Morphology of glass fibers in electronics workers with fiberglass dermatitis – a scanning electron microscopy study. Int J Dermatol 40:258–261CrossRefGoogle Scholar
  19. Kean T, Mc Nally M (2009) Latex hypersensitivity: a closer look at considerations for dentistry. J Can Dent Assoc 75:279–282PubMedGoogle Scholar
  20. Koh D, Aw TC, Foulds IS (1992) Fibreglass dermatitis from printed circuit boards. Am J Ind Med 21:193–198CrossRefGoogle Scholar
  21. Lachapelle JM (1986) Industrial airborne irritant or allergic contact dermatitis. Contact Dermatitis 14:137–145CrossRefGoogle Scholar
  22. Lachapelle JM (1987) Industrial airborne irritant contact dermatitis due to dust particles. Boll Dermatol Allerg Prof 2:83–89Google Scholar
  23. Lachapelle JM (2006) Airborne irritant dermatitis. In: Chew AL, Maibach HI (eds) Irritant dermatitis. Springer, Berlin, pp 71–79CrossRefGoogle Scholar
  24. Lachapelle JM (2014) Occupational airborne contact dermatitis. A realm for specific diagnostic procedures and tips. In: Lachapelle JM, Bruze M, Elsner PU (eds) Patch testing tips, Recommendations from the ICDRG. Springer, Heidelberg, pp 101–114CrossRefGoogle Scholar
  25. Lachapelle JM (2017) Eczémas “systémiques”. In: Saurat JH, Lipsker D, Thomas L, Borradori L, Lachapelle JM (eds) Dermatologie et infections sexuellement transmissibles, 6th edn. Elsevier-Masson, Paris, pp 259–260Google Scholar
  26. Lachapelle JM, Gouverneur JC, Boulet M et al (1977) A modified technique (using polyester tape) of skin surface biopsy. Br J Dermatol 97:49–52CrossRefGoogle Scholar
  27. Lachapelle JM, Mahmoud G, Van Herle R (1984) Anhydrite dermatitis in coal mines: an airborne irritant reaction assessed by laser Doppler flowmetry. Contact Dermatitis 11:188–189CrossRefGoogle Scholar
  28. Lachapelle JM, Frimat P, Tennstedt D et al (1992) Précis de Dermatologie Professionnelle et de l’Environnement. Masson, Paris, pp 107–111Google Scholar
  29. Lagier F, Badier M, Martigny J et al (1990) Latex as aeroallergen. Lancet 336:516–517CrossRefGoogle Scholar
  30. Le Coz CJ, Coninx D, Van Rengen A et al (1999) An epidemic of occupational contact dermatitis from an immersion oil for microscopy in laboratory personnel. Contact Dermatitis 40:77–83CrossRefGoogle Scholar
  31. Legatt PA, Smith DR (2006) Dermatitis and aircrew. Contact Dermatitis 54:1–4CrossRefGoogle Scholar
  32. Lidén C, Lundgren L, Skare L et al (1998) A new whole-body exposure chamber for human skin and lung challenge experiments – the generation of wheat flour aerosols. Ann Occup Hyg 42:541–547CrossRefGoogle Scholar
  33. Lundgren L, Moberg C, Lidèn C (2014) Do insulation products of man-made vitreous fibres still cause skin discomfort? Contact Dermatitis 70:351–360CrossRefGoogle Scholar
  34. Mahajan VK, Sharma V, Gupta M et al (2014) Parthenium dermatitis: is parthenolide an effective choice for patch testing ? Contact Dermatitis 70:340–343CrossRefGoogle Scholar
  35. Mancuso G, Berdondini RM (2008) Occupational conjunctivitis as the sole manifestation of airborne contact allergy to trimethylolpropane triacrylate contained in a UV-cured paint. Contact Dermatitis 59:372–373CrossRefGoogle Scholar
  36. Marks R, Dawber RPR (1971) Skin surface biopsy: an improved technique for the examination of the horny layer. Br J Dermatol 84:117–123CrossRefGoogle Scholar
  37. Noe R, Cohen AL, Lederman E et al (2007) Skin disorders among construction workers following Hurricane Katrina and Hurricane Rita: an outbreak investigation in New Orleans, Louisiana. Arch Dermatol 143:1393–1398CrossRefGoogle Scholar
  38. Patiwael JA, Wintzen M, Rustemeyer T et al (2005) Airborne irritant contact dermatitis due to synthetic fibres from an air-conditioning filter. Contact Dermatitis 52:126–129CrossRefGoogle Scholar
  39. Pirilä V (1950) Thiokol as a frequent cause of dermatitis. Acta Allerg 3:319–328CrossRefGoogle Scholar
  40. Pirilä V, Noro L, Laamen A (1963) Air pollution and allergy. Acta Allerg 18:113–130CrossRefGoogle Scholar
  41. Pontén A (2006) Airborne occupational contact dermatitis caused by extremely low concentrations of budesonide. Contact Dermatitis 55:121–124CrossRefGoogle Scholar
  42. Samochocki Z (2007) Hypersensitivity to aeroallergens in adult patients with atopic dermatitis develops due to different immunological mechanisms. Eur J Dermatol 17:520–524PubMedGoogle Scholar
  43. Santos R, Goossens A (2007) An update on airborne contact dermatitis: 2001–2006. Contact Dermatitis 57:353–360CrossRefGoogle Scholar
  44. Sharma VK, Sethuraman G (2007) Parthenium dermatitis. Dermatitis 18:183–190CrossRefGoogle Scholar
  45. Shkalim V, Herskovici Z, Amir J et al (2008) Systemic allergic reaction to tree processionary caterpillar in children. Pediatr Emerg Care 24:233–235CrossRefGoogle Scholar
  46. Stam-Westerveld EB (1997) Man-made mineral fibres: glasvezel- en steenwoldermatitis. Ned Tijdschr Dermatol Venereol 7:196–198Google Scholar
  47. Stam-Westerveld EB, Coenraads PJ, van der Valk PJ et al (1994) Rubbing test responses of the skin to man-made mineral fibres of different diameters. Contact Dermatitis 31:1–4CrossRefGoogle Scholar
  48. Swinnen I, Goossens A (2013) An update on airborne contact dermatitis : 2007–2011. Contact Dermatitis 68:232–238CrossRefGoogle Scholar
  49. Thune P (1977) Contact allergy due to lichens in patients with a history of photosensitivity. Contact Dermatitis 3:267–272CrossRefGoogle Scholar
  50. Verma KK, Mahesh R, Strivastava P et al (2008) Azathioprine versus betamethasone for the treatment of parthenium dermatitis: a randomized controlled study. Indian J Dermatol Venereol Leprol 74:453–457CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DermatologyCatholic University of LouvainBrusselsBelgium

Personalised recommendations