Skip to main content

Morphology of Epoxy/Rubber Blends

  • Reference work entry
  • First Online:
Handbook of Epoxy Blends

Abstract

The investigations on the morphological features of epoxy/rubber blends are of great importance as the morphology controls the property and performance of these blends. The characterization techniques like optical microscopy (OM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) are commonly used to evaluate the morphology and phase distribution of the dispersed rubber particles in the epoxy matrix. These characterization techniques are used to explore the morphological features in epoxy systems modified with different kinds of rubbers such as liquid rubbers, preformed core–shell rubber particles, in situ-formed rubber particles, etc. Moreover, several factors which affect the final two-phase morphology in the epoxy/rubber blends are also explored using these techniques. The fracture surface characteristics are also explored using morphological investigation of the fracture/fatigue surface of the epoxy/rubber blends to establish the toughening mechanism operating in them. While both OM and SEM are widely used to reveal the microstructure, AFM and TEM are used to trace out the nanostructure in such blends. The current chapter gives a detailed discussion on the use of such techniques to explore the morphology and the microscopic toughening phenomena operates in epoxy/rubber blends on the basis of published reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azimi HR, Pearson RA, Hertzberg RW (1996) Fatigue of rubber-modified epoxies: effect of particle size and volume fraction. J Mater Sci 31:3777–3789

    Article  CAS  Google Scholar 

  • Bagheri R, Pearson RA (1995) Interfacial studies in CTBN-modified epoxies. J Appl Polym Sci 58:427–437

    Article  CAS  Google Scholar 

  • Bagheri R, Pearson RA (2000) Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance. Polymer 41:269–276

    Article  CAS  Google Scholar 

  • Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49:201–225

    Article  CAS  Google Scholar 

  • Balakrishnan S, Start PR, Raghavan D, Hudson SD (2005) The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer 46:11255–11262

    Article  CAS  Google Scholar 

  • Barcia FL, Amaral TP, Soares BG (2003) Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer 44:5811–5819

    Article  CAS  Google Scholar 

  • Bartlet P, Pascault JP, Sautereau H (1985) Relationships between structure and mechanical properties of rubber-modified epoxy networks cure with dicyanodiamide hardener. J Appl Polym Sci 30:2955–2966

    Article  CAS  Google Scholar 

  • Bascom WD, Cottington RL, Jones RL, Peyser P (1975) The fracture of epoxy- and elastomer-modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci 19:2545–2562

    Article  CAS  Google Scholar 

  • Bascom WD, Ting RY, Moulton RJ, Riew CK, Siebert AR (1981) The fracture of an epoxy polymer containing elastomeric modifiers. J Mater Sci 16:2657–2664

    Article  CAS  Google Scholar 

  • Chen EK, Jan YH (1991) Toughening mechanism for a rubber-toughened epoxy resin with rubber/matrix interfacial modification. J Mater Sci 26:5848–5858

    Article  CAS  Google Scholar 

  • Chen TK, Jan YH (1995) Effect of matrix ductility on the fracture behavior of rubber toughened epoxy resins. Polym Eng Sci 35:778–785

    Article  CAS  Google Scholar 

  • Chen D, Pascault JP, Sautereau H (1994) Rubber-modified epoxies: IV. Role of chain ends on the morphologies and properties. Polym Int 33:263–271

    Article  CAS  Google Scholar 

  • Chen J, Kinloch AJ, Sprenger S, Taylor AC (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 54:4276–4289

    Article  CAS  Google Scholar 

  • Guan L-Z, Gong L-X, Tang L-C, Wu L-B, Jiang J-X, Lai G-Q (2014) Mechanical properties and fracture behaviors of epoxy composites with phase-separation formed liquid rubber and preformed powered rubber nanoparticles: a comparative study. Polym Compos. doi:10.1002/pc.22995

    Google Scholar 

  • He J, Raghavan D, Hoffman D, Hunston D (1999) The influence of elastomer concentration on toughness in dispersions containing preformed acrylic elastomeric particles in an epoxy matrix. Polymer 40:1923–1933

    Article  CAS  Google Scholar 

  • Heng Z, Chen Y, Zou H, Liang M (2015) Simultaneously enhanced tensile strength and fracture toughness of epoxy resins by a poly(ethylene oxide)-block-carboxyl terminated butadiene-acrylonitrile rubber dilock copolymer. RSC Adv 5:42362–42368

    Article  CAS  Google Scholar 

  • Huang Y, Kinloch AJ (1992) The role of plastic void growth in the fracture of rubber-toughened epoxy polymers. J Mater Sci Lett 11:484–487

    Article  CAS  Google Scholar 

  • Kim DS, Kim SC (1994) Rubber modified epoxy resin. II: phase separation behavior. Polym Eng Sci 34:1598–1604

    Article  CAS  Google Scholar 

  • Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983a) Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24:1341–1354

    Article  CAS  Google Scholar 

  • Kinloch AJ, Shaw SJ, Hunston DL (1983b) Deformation and fracture behaviour of a rubber-toughened epoxy: 2. Failure criteria. Polymer 24:1355–1363

    Article  CAS  Google Scholar 

  • Kinloch AJ, Lee SH, Taylor AC (2014) Improving the fracture toughness and the cyclic-fatigue resistance of epoxy-polymer blends. Polymer 55:6325–6334

    Article  CAS  Google Scholar 

  • Konnola R, Parameswaranpillai J, Joseph K (2015) Mechanical, thermal, and viscoelastic response of novel in situ CTBN/POSS/epoxy hybrid composite system. Polym Compos. doi:10.1002/pc

    Google Scholar 

  • Kunz SC, Sayre JA, Assink RA (1982) Morphology and toughness characterization of epoxy resins modified with amine and carboxyl terminated rubbers. Polymer 23:1897–1906

    Article  CAS  Google Scholar 

  • Lee HS, Kyu T (1990) Phase separation dynamics of rubber/epoxy mixtures. Macromolecules 23:459–464

    Article  CAS  Google Scholar 

  • Liang YL, Pearson RA (2010) The toughening mechanism in Hybrid Epoxy-Silica-Rubber Nanocomposites (HESRNs). Polymer 51:4880–4890

    Article  CAS  Google Scholar 

  • Liu W, Hoa SV, Pugh M (2004) Morphology and performance of epoxy nanocomposites modified with organoclay and rubber. Polym Eng Sci 44:1178–1186

    Article  CAS  Google Scholar 

  • Ma J, Mo M-S, Du X-S, Dai S-R, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110:304–312

    Article  CAS  Google Scholar 

  • Manzione LT, Gillham JK, Mcpherson CA (1981a) Rubber-modified epoxies. I. Transitions and morphology. J Appl Polym Sci 26:889–905

    Article  CAS  Google Scholar 

  • Manzione LT, Gillham JK, McPherson CA (1981b) Rubber-modified epoxies. II. Morphology and mechanical properties. J Appl Polym Sci 26:907–919

    Article  CAS  Google Scholar 

  • Mathew VS, George SC, Parameswaranpillai J, Thomas S (2014) Epoxidized natural rubber/epoxy blends: phase morphology and thermomechanical properties. J Appl Polym Sci 131:39906

    Article  Google Scholar 

  • Minfeng Z, Xudong S, Huiquan X, Genzhong J, Xuewen J, Baoyi W, Chenze Q (2008) Investigation of free volume and the interfacial, and toughening behavior for epoxy resin/rubber composites by positron annihilation. Radiat Phys Chem 77:245–251

    Article  Google Scholar 

  • Naè HN (1986) Phase separation in rubber-modified thermoset resins: optical microscopy and laser light scattering. J Appl Polym Sci 31:15–25

    Article  Google Scholar 

  • Nigam V, Setua DK, Mathur GN (2003) Failure analysis of rubber toughened epoxy resin. J Appl Polym Sci 87:861–868

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies part 2 microscopy studies. J Mater Sci 21:2475–2488

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  CAS  Google Scholar 

  • Quan D, Ivankovic A (2015) Effect of Core Shell Rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28

    Article  CAS  Google Scholar 

  • Ratna D, Banthia AK (2000) Toughened epoxy adhesive modified with acrylate based liquid rubber. Polym Int 49:281–287

    Article  CAS  Google Scholar 

  • Ratna D, Banthia AK (2007) Reactive acrylic liquid rubber with terminal and pendant carboxyl groups as a modifier for epoxy resin. Polym Eng Sci 47:26–33

    Article  CAS  Google Scholar 

  • Ratna D, Simon GP (2010) Epoxy and hyperbranched polymer blends: morphology and free volume. J Appl Polym Sci 117:557–564

    CAS  Google Scholar 

  • Russell B, Chartoff R (2005) The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy. Polymer 46:785–798

    Article  CAS  Google Scholar 

  • Shaffer OL, Bagheri R, Qian JY, Dimonie V, Pearson RA, El-aasser MS (1995) Characterization of the particle-matrix interface in rubber-modified epoxy by atomic force microscopy. J Appl Polym Sci 58:465–484

    Article  CAS  Google Scholar 

  • Soares BG, Leyva ME, Moreira VX, Barcia FL, Khastgir D, SimĂ£o RA (2004) Morphology and dielectric properties of an epoxy network modified by end-functionalized liquid polybutadiene. J Polym Sci B Polym Phys 42:4053–4062

    Article  CAS  Google Scholar 

  • Soares BG, Dahmouche K, Lima VD, Silva AA, Caplan SPC, Barcia FL (2011) Characterization of nanostructured epoxy networks modified with isocyanate-terminated liquid polybutadiene. J Colloid Interface Sci 358:338–346

    Article  CAS  Google Scholar 

  • Sultan JN, McGarry FJ (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13:29–34

    Article  CAS  Google Scholar 

  • Tang L-C, Wang X, Wan Y-J, Wu L-B, Jiang J-X, Lai G-Q (2013) Mechanical properties and fracture behaviors of epoxy composites with multi-scale rubber particles. Mater Chem Phys 141:333–342

    Article  CAS  Google Scholar 

  • Thomas R, Abraham J, Thomas PS, Thomas S (2004) Influence of carboxyl-terminated (butadiene-co-acrylonitrile)loading on the mechanical and thermal properties of cured epoxy blends. J Polym Sci B Polym Phys 42:2531–2544

    Article  CAS  Google Scholar 

  • Thomas R, Ronkay F, Czigany T, Cvelbac U, Mozetic M, Thomas S (2011) A probe on the failure mechanism in rubber-modified epoxy blends: morphological and acoustic emission analysis. J Adhes Sci Technol 25:1747–1765

    Article  CAS  Google Scholar 

  • Tripathi G, Srivastava D (2007) Effect of carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-a (DGEBA) epoxy resin. Mater Sci Eng A 443:262–269

    Article  Google Scholar 

  • Verchere D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams RJJ (1991a) Rubber-modified epoxies. IV. Influence of morphology on mechanical properties. J Appl Polym Sci 43:293–304

    Article  CAS  Google Scholar 

  • Verchere D, Pascault JP, Sautereau H, Moschiar SM, Riccardi CC, Williams RJJ (1991b) Rubber-modified epoxies. II. Influence of the cure schedule and rubber concentration on the generated morphology. J Appl Polym Sci 42:701–716

    Article  CAS  Google Scholar 

  • Vijayan PP, Puglia D, Jyotishkumar P, Kenny JM, Thomas S (2012) Effect of nanoclay and carboxyl-terminated (butadiene-co-acrylonitrile) (CTBN) rubber on the reaction induced phase separation and cure kinetics of an epoxy/cyclic anhydride system. J Mater Sci 47:5241–5253

    Article  CAS  Google Scholar 

  • Vijayan PP, Puglia D, Kenny JM, Thomas S (2013) Effect of organically modified nanoclay on the miscibility, rheology, morphology and physical properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter 9:2899–2911

    Article  CAS  Google Scholar 

  • Wise CW, Cook WD, Goodwin AA (2000) CTBN rubber phase precipitation in model epoxy resins. Polymer 41:4625–4633

    Article  CAS  Google Scholar 

  • Xiao K, Ye L (2000) Rate-effect on fracture behavior of Core-Shell-Rubber (CSR)-modified epoxies. Polym Eng Sci 40:70–81

    Article  CAS  Google Scholar 

  • Yamanaka K, Inoue T (1990) Phase separation mechanism of rubber-modified epoxy. J Mater Sci 25:241–245

    Article  CAS  Google Scholar 

  • Yamanaka K, Takagi Y, Inoue T (1989) Reaction-induced phase separation in rubber-modified epoxy resins. Polymer 60:1839–1844

    Article  Google Scholar 

  • Yee AF, Pearson RA (1986) Toughening mechanisms in elastomer-modified epoxies part 1 mechanical studies. J Mater Sci 21:2462–2474

    Article  CAS  Google Scholar 

  • Yee AF, Li D, Li X (1993) The importance of constraint relief caused by rubber cavitation in the toughening of epoxy. J Mater Sci 28:6392–6398

    Article  CAS  Google Scholar 

  • Yu S, Hu H, Ma J, Yin J (2008) Tribological properties of epoxy/rubber nanocomposites. Tribol Int 41:1205–1211

    Article  CAS  Google Scholar 

  • Zhang J, Zhang H, Yang Y (1999) Polymerization-induced bimodal phase separation in a rubber-modified epoxy system. J Appl Polym Sci 72:59–67

    Article  CAS  Google Scholar 

  • Zhao Y, Chen Z-K, Liu Y, Xiao H-M, Feng Q-P, Fu S-Y (2013) Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber. Compos Part A 55:178–187

    Article  CAS  Google Scholar 

  • Zhao K, Song X-X, Liang C-S, Wang J, Xu S-A (2015) Morphology and properties of nanostructured epoxy blends toughened with epoxidized carboxyl-terminated liquid rubber. Iran Polym J 24:425–435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Poornima Vijayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Vijayan, P.P. (2017). Morphology of Epoxy/Rubber Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-40043-3_4

Download citation

Publish with us

Policies and ethics