Skip to main content

Rheology of Epoxy/Block-Copolymer Blends

  • Reference work entry
  • First Online:
  • 2363 Accesses

Abstract

The rheology of the epoxy/block copolymer blends is an important learning tool to understand the microphase separation of one of the blocks of block copolymer during the curing process. The knowledge about the viscoelastic changes during the thermosetting network formation allows to better understand the processes such as gelation, vitrification, and microphase separation. Different methods can be employed to determine the gelation point of the epoxy/block copolymer blends. The first method is related to the extrapolation of the complex viscosity (η*) to infinite, the second to the intersection of dynamic storage modulus (G′) and dynamic loss modulus (G″) curves, and the third one to the fact that tan δ is independent on frequency at gelation point. In this chapter, a few examples of rheology of epoxy/block copolymer blends will be presented with the main aim of showing the correlation between rheological behavior and final properties of thermosetting systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bonnet A, Pascault JP, Sautereau H, Camberlin Y (1999) Epoxy-diamine thermoset/thermoplastic blends. 2. Rheological behavior before and after phase separation. Macromolecules 32:8524–8530

    Article  CAS  Google Scholar 

  • Byutner O, Smith GD (2002) Viscoelastic properties of polybutadiene in the glassy regime from molecular dynamic simulations. Macromolecules 35:3769–3771

    Article  CAS  Google Scholar 

  • Cano L, Builes DH, Tercjak A (2014) Morphological and mechanical study of nanostructured epoxy systems modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)triblock copolymer. Polymer 55:738–745

    Article  CAS  Google Scholar 

  • Cassagnau P, Fenouillot F (2004) Rheological study of mixing in molten polymers: 2-mixing of reactive systems. Polymer 45:8031–8040

    Article  CAS  Google Scholar 

  • Castro JM, Macosko CW, Perry SJ (1984) Viscosity changes during urethane polymerization with phase separation. Polym Commun 25:82–87

    CAS  Google Scholar 

  • Chambon F, Winter HH (1985) Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym Bull 13:499–503

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  Google Scholar 

  • Chambon F, Petrovic ZS, Mac Knight WJ, Winter HH (1986) Rheology of model polyurethanes at the gel point. Macromolecules 19:2146–2149

    Article  CAS  Google Scholar 

  • Eloundou JP, Gerard JF, Harran D, Pascault JP (1996) Temperature dependence of the behavior of a reactive epoxy-amine system by means of dynamic rheology. 2. High-Tg epoxy-amine system. Macromolecules 29:6917–6927

    Article  CAS  Google Scholar 

  • Eloundou JP, Ayina O, Nga NH, Gerard JF, Pascault JP, Boiteux G, Seytre G (1998) Simultaneous kinetic and microdielectric studies of some epoxy-amine systems. J Polym Sci Part B Polym Phys 36:2911–2921

    Article  CAS  Google Scholar 

  • Fine T, Lortie F, David L, Pascault J-P (2005) Structures and rheological properties of reactive solutions of block copolymers. Part I. Diblock copolymers in a liquid epoxy monomer. Polymer 46:6605–6613

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Jyotishkumar P, Thomas S (2012) Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styrene-block-butadiene-block-styrene triblock copolymer systems. Polym Eng Sci 52:2336–2347

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Thomas S (2014) Reaction-induced phase separation and thermomechanical properties in epoxidized styrene-block-butadiene-block-styrene triblock copolymer modified epoxy/DDM system. Ind Eng Chem Res 53:6941–6950

    Article  CAS  Google Scholar 

  • George SM, Puglia D, Kenny JM, Parameswaranpillai J, Vijayan PP, Pionteck J, Thomas S (2015) Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-blockbutadiene-block-styrene) triblock copolymer modified epoxy resin–diamino diphenyl methane nanostructured blend systems. Phys Chem Chem Phys 17:12760–12770

    Article  CAS  Google Scholar 

  • Girard-Reydet E, Riccardi CC, Sautereau H, Pascault JP (1995) Epoxy-aromatic diamine kinetics. Part 1. Modeling and influence of the diamine structure. Macromolecules 28:7599–7607

    Article  CAS  Google Scholar 

  • Gutierrez J, Tercjak A, Mondragon I (2010) Transparent nanostructured thermoset composites containing well-dispersed TiO2 nanoparticles. J Phys Chem C 114:22424–22430

    Article  CAS  Google Scholar 

  • Gutierrez J, Mondragon I, Tercjak A (2011) Morphological and optical behavior of thermoset matrix composites varying both polystyrene-block-poly(ethylene oxide) and TiO2 nanoparticle content. Polymer 52:5699–5707

    Article  CAS  Google Scholar 

  • Harran D, Laudouard A (1986) Rheological study of the isothermal reticulation of an epoxy resin. J Appl Polym Sci 32:6043–6062

    Article  CAS  Google Scholar 

  • Ishii Y, Ryan AJ (2000) Processing of poly(2,6-dimethyl-1,4-phenylene ether) with epoxy resin. 1. Reaction-induced phase separation. Macromolecules 33:158–166

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Pionteck J, Ozdilek C, Moldenaers P, Thomas S (2011) Rheology and pressure-volume-temperature behavior of the thermoplastic poly(acrylonitrile-butadiene-styrene)-modified epoxy-DDS system during reaction induced phase separation. Soft Matter 7:7248–7256

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Moldenaers P, George SM, Thomas S (2012) Viscoelastic effects in thermoplastic poly(styrene-acrylonitrile)-modified epoxy-DDM system during reaction induced phase separation. Soft Matter 8:7452–7462

    Article  CAS  Google Scholar 

  • Kim H, Char K (2000) Effect of phase separation on rheological properties during the isothermal curing of epoxy toughened with thermoplastic polymer. Ind Eng Chem Res 39:955–959

    Article  CAS  Google Scholar 

  • Liu Y, Zhong XH, Zhan GZ, Yu YF, Jin JY (2012) Effect of mesoscopic fillers on the polymerization induced viscoelastic phase separation at near- and off-critical compositions. J Phys Chem B 116:3671–3682

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements and applications. Wiley-VCH, New York

    Google Scholar 

  • Meng F, Zheng S, Zhang W, Li H, Liang Q (2006) Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer. Macromolecules 39:711–719

    Article  CAS  Google Scholar 

  • Meynie L, Fenouillot F, Pascault JP (2004) Polymerization of a thermoset system into a thermoplastic matrix. Effect of the shear. Polymer 45:1867–1877

    Article  CAS  Google Scholar 

  • Mortimer S, Ryan AJ, Stanford JL (2001) Rheological behavior and gel-point determination for a model lewis acid-initiated chain growth epoxy resin. Macromolecules 34:2973–2980

    Article  CAS  Google Scholar 

  • Mustata F, Bicu J (2001) Rheological and thermal behaviour of DGEBA/EA and DGEHQ/EA epoxy systems crosslinked with TETA. Polym Testing 20:533–538

    Article  CAS  Google Scholar 

  • Ocando C, Serrano E, Tercjak A, Pena C, Kortaberria G, Calberg C, Grignard B, Jerome R, Carrasco PM, Mecerreyes D, Mondragon I (2007) Structure and properties of a semifluorinated diblock copolymer modified epoxy blend. Macromolecules 40:4068–4074

    Article  CAS  Google Scholar 

  • Pascault JP, Williams RJJ (2010) Epoxy polymers: new materials and innovations. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Pichaud S, Duteurtre X, Fit A, Stephan F, Maazouz A, Pascault JP (1999) Chemorheological and dielectric study of epoxy-amine for processing control. Polym Int 48:1205–1218

    Article  CAS  Google Scholar 

  • Poncet S, Boiteux G, Pascault JP, Sautereau H, Seytre G, Rogozinski J, Kranbuehl D (1999) Monitoring phase separation and reaction advancement in situ in thermoplastic/epoxy blends. Polymer 40:6811–6820

    Article  CAS  Google Scholar 

  • Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2006) Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 39:2254–2261

    Article  CAS  Google Scholar 

  • Serrano E, Tercjak A, Ocando C, Larrañaga M, Parellada MD, Corona-Galván S, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2007) Curing behaviour and final properties of nanostructured thermosetting systems modified with epoxidized styrene-butadiene linear diblock copolymers. Macromol Chem Phys 208:2281–2292

    Article  CAS  Google Scholar 

  • Serrano E, Kortaberria G, Tercjak A, Mondragon I (2009) Molecular dynamics of an epoxy resin modified with an epoxidized poly(styrene–butadiene) linear block copolymer during cure and microphase separation processes. Europ Polym J 45:1046–1057

    Article  CAS  Google Scholar 

  • Tercjak A, Remiro PM, Mondragon I (2005) Phase separation and rheological behavior during curing of an epoxy resin modified with syndiotactic polystyrene. Polym Eng Sci 45:303–313

    Article  CAS  Google Scholar 

  • Tercjak A, Serrano E, Remiro PM, Mondragon I (2006) Viscoelastic behavior of thermosetting epoxy mixtures modified with syndiotactic polystyrene during network formation. J Appl Polym Sci 100:2348–2355

    Article  CAS  Google Scholar 

  • Tercjak A, Serrano E, Garcia I, Mondragon I (2008) Thermoresponsivemeso/nanostructured thermosetting materials based on PS-b-PEO block copolymer-dispersed liquid crystal: curing behavior and morphological variation. Acta Mater 56:5112–5122

    Article  CAS  Google Scholar 

  • Tung CYM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 32:569–574

    Article  Google Scholar 

  • Winter HH (1987) Can the gel point of a crosslinking polymer be detected by the G′-G″ crossover? Polym Eng Sci 27:1698–1702

    Article  CAS  Google Scholar 

  • Winter HH (2000) Experimental methods in polymer science. Academic, San Diego

    Google Scholar 

  • Winter HH (2007) Evolution of rheology during chemical gelation. Prog Colloid Polym Sci 75:104–110

    Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Yu Y, Wang M, Gan W, Tao Q, Li K (2004) Polymerization-induced viscoelastic phase separation in polyethersulfone-modified epoxy systems. J Phys Chem B 108:6208–6215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Tercjak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gutierrez, J., Cano, L., Tercjak, A. (2017). Rheology of Epoxy/Block-Copolymer Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-40043-3_35

Download citation

Publish with us

Policies and ethics