Skip to main content

Applications of Epoxy/Rubber Blends

  • Reference work entry
  • First Online:
Handbook of Epoxy Blends

Abstract

Epoxy resins have been used in a very wide range of industrial applications for more than half a century. Paints, adhesives, coatings, and matrix material for many different kinds of composites are the main applications of epoxy resins. Excellent adhesion properties along with high mechanical strength and thermal stability are the major attractions of this family of engineering materials. However, epoxy resins suffer from the inherent brittleness which can potentially limit their applications. Among different approaches which have been employed to reduce this deficiency, rubber toughening has been practiced the most. Different types of rubber modifiers which are blended with epoxy resins for this purpose include reactive oligomers, preformed rubber particles, and di- or tri-block copolymers. This chapter tries to give a general overview of the whole concept of rubber-toughened epoxies to the reader. Delivering a more realistic sense of industrial applications of epoxy/rubber and epoxy/copolymer blends by means of practical examples is done in this chapter as well. The goal is that the reader can benefit from this chapter in expectations from epoxy blends in practice. Engineers interested in epoxy resins may find insights in this chapter for their developing industrial/research plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Aqeeli N (2015) Fabrication and assessment of crumb-rubber-modified coatings with anticorrosive properties. Materials 8:181–192

    Article  Google Scholar 

  • Bagheri R, Williams MA, Pearson RA (1997) Use of surface modified recycled rubber particles for toughening of epoxy polymers. Polym Eng Sci 37:245–251

    Article  CAS  Google Scholar 

  • Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49:201–225

    Article  CAS  Google Scholar 

  • Barsotti R, Fine T, Inoubli R, Gerard P, Schmidt S, Macy N, Magnet S, Navarro C (2008) Nanostrength® block copolymers for epoxy toughening. The meeting of the thermoset resin formulators association, Chicago, 15–16 Sept

    Google Scholar 

  • Barsotti RJ, Alu A, Bentzel G, Allen P, Macy N, Schmidt S, Wells MO (2010) Nanostrength® block copolymers for wind energy. 2010 Wind Turbine Blade Workshop, Sandia National Labs, 20 July

    Google Scholar 

  • Bascom WD, Cottington RL, Jones RL, Peyser P (1975) The fracture of epoxy- and elastomers modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci 19:2545–2562

    Article  CAS  Google Scholar 

  • Bowen RL (1982) Composite and sealant resins – past, present, and future. Pediatr Dent 4:10–15

    CAS  Google Scholar 

  • Bray DJ, Dittanet P, Guild FJ, Kinloch AJ, Masania K, Pearson RA, Taylor AC (2013) The modelling of the toughening of epoxy polymers via silica nanoparticles: the effects of volume fraction and particle size. Polymer 54:7022–7032

    Article  CAS  Google Scholar 

  • Bucknall CB, Yoshii T (1978) Relationship between structure and mechanical properties in rubber toughened epoxy resins. Br Polym J 10:53–59

    Article  CAS  Google Scholar 

  • Chen Y, Pearson RA (2014) On the use of self-assembling block copolymers to toughen a model epoxy. The 2014 annual meeting of the Adhesion Society, San Diego, p 3

    Google Scholar 

  • Chen J, Kinloch AJ, Sprenger S, Taylor AC (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 54:4276–4289

    Article  CAS  Google Scholar 

  • Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ETBN) rubber. Eur Polym J 38:251–264

    Article  CAS  Google Scholar 

  • Chong HM, Taylor AC (2013) The microstructure and fracture performance of styrene-butadiene-methylmethacrylate block copolymer-modified epoxy polymers. J Mater Sci 48:6762–6777

    Article  CAS  Google Scholar 

  • Dean JM, Lipic PM, Grubbs RB, Cook RF, Bates FS (2001) Micellar structure and mechanical properties of block copolymer-modified epoxies. J Polym Sci Pol Phys 39:2996–3010

    Article  CAS  Google Scholar 

  • Dean JM, Grubbs RB, Saad W, Cook RF, Bates FS (2003) Mechanical properties of block copolymer vesicle and micelle modified epoxies. J Polym Sci Pol Phys 41:2444–2456

    Article  CAS  Google Scholar 

  • Declet-Perez C, Francis LF, Bates FS (2015) Deformation process in block copolymer toughened epoxies. Macromolecules 48:3672–3684

    Article  CAS  Google Scholar 

  • Dunn DJ (2003) Adhesives and sealants: technology, applications and markets. Rapra Technology, Shrewsbury, pp 27–30

    Google Scholar 

  • Evonik (2008) Adhesive applications: product portfolio, May

    Google Scholar 

  • Fakhar A, Aabeadiaan M, Keivani M, Langari M (2012) Use of reactive oligomer to improve fracture resistance of epoxy used in medical applications and GRP pipelines. World Appl Sci J 20:259–263

    Google Scholar 

  • Forte MS, Whitney JM, Schoeppner GA (2000) The influence of adhesive reinforcement on the mode-I fracture toughness of a bonded joint. Comp Sci Technol 60:2389–2405

    Article  CAS  Google Scholar 

  • Gao J, Li J, Benicewicz BC, Zhao S, Hillborg H, Schadler LS (2012) The mechanical properties of epoxy composites filled with rubbery copolymer grafted SiO2. Polymers 4:187–210

    Article  CAS  Google Scholar 

  • Garg AC, Mai Y-W (1988) Failure mechanisms in toughened epoxy resins – a review. Compos Sci Technol 31:179–223

    Article  CAS  Google Scholar 

  • Grubbs RB, Dean JM, Broz ME, Bates FS (2000) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33:9522–9534

    Article  CAS  Google Scholar 

  • Gupta P, Bajpai M (2011) Development of siliconized epoxy resins and their applications as anticorrosive coatings. Adv Chem Eng Sci 2:1333–139

    Google Scholar 

  • He J, Raghavan D, Hoffman D, Hunston D (1999) The influence of elastomer concentration on toughness in dispersions containing acrylic elastomeric particles in an epoxy matrix. Polymer 40:1923–1933

    Article  CAS  Google Scholar 

  • Ho TH, Wang CS (1994) Dispersed acrylate rubber-modified epoxy resins for electronic encapsulation. J Polym Res 1:103–108

    Article  CAS  Google Scholar 

  • Humphreys S (2011) Impact, weight and anti-corrosion coatings for pipelines. Applied Market Information, UK (available on https://www.amiplastics.com/pressreleases/newsitem.aspx?item=1000140)

  • Hydro RM, Pearson RA (2007) Epoxies toughened with triblock copolymers. J Polym Sci Part B Polym Phys 45:1470–1481

    Article  CAS  Google Scholar 

  • Jacob GC, Hoevel B, Pham HQ, Dettlof ML, Verghese NE, Turakhia RH, Hunter G (2007) Technical advances in epoxy technology for wind turbine blade composite fabrication. SAMPE, Baltimore, 15 pp

    Google Scholar 

  • Jansen BJP, Tamminga KY, Meijer HEH, Lemstra PJ (1999) Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins. Polymer 40:5601–5607

    Article  CAS  Google Scholar 

  • Karger-Kocsis J, Meszaros L, Barany T (2012) Ground tyre rubber (GTR) in thermoplastics, thermosets and rubbers. J Mater Sci 48:1–38

    Article  Google Scholar 

  • Kehr JA (2012) How fusion-bonded epoxies protect pipeline: single- and double-layer systems. Protecting and maintaining transmission pipeline. Technology Publishing, Pittsburgh, pp 13–22

    Google Scholar 

  • Kim HS, Ma P (1996) Correlation between stress-whitening and fracture toughness in rubber-modified epoxies. J Appl Polym Sci 61:659–662

    Article  CAS  Google Scholar 

  • Kinloch AJ (2003) Toughening epoxy adhesives to meet today’s challenges. MRS Bull 28 445–448

    Google Scholar 

  • Kinloch AJ, Finch CA, Hashemi S (1987) Effect of segmental molecular mass between cross-links of the matrix phase on the toughness of rubber-modifies epoxies. Polym Commun 28:322–325

    CAS  Google Scholar 

  • Kinloch AJ, Korenberg CF, Tan KT, Watts JF (2007) Crack growth in structural adhesive joints in aqueous environments. J Mater Sci 42:6353–6370

    Article  CAS  Google Scholar 

  • Kinloch AJ, Lee SH, Taylor AC (2014) Improving the fracture toughness and cyclic-fatigue resistance of epoxy-polymer blends. Polymer 55:6325–6334

    Article  CAS  Google Scholar 

  • Kishi H, Kunimitsu Y, Imade J, Oshita S, Morishita Y, Asada M (2011) Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys. Polymer 52:760–768

    Article  CAS  Google Scholar 

  • Kishi H, Kunimitsu Y, Nakashima Y, Abe T, Imade J, Oshita S, Morishita Y, Asada M (2015) Control of nanostructures generated in epoxy matrices blended with PMMA-b-PnBA-b-PMMA triblock copolymers. Express Polym Lett 9:23–35

    Article  CAS  Google Scholar 

  • Kozii VV, Rozenberg BA (1992) Mechanisms of energy dissipation in elastomer-modified thermosetting polymer matrices and composites based on such polymers. Polym Sci 34:919–951

    Google Scholar 

  • Kunal K, Sprenger S (2014) optimized epoxy resins for automotive composites: tough, stiff and fatigue resistant. Automotive, composites conference and exhibition, Society of Plastic Engineers (SPE) 9–11 Sept, 5 pp

    Google Scholar 

  • Kunz-Douglass S, Beamont PWR, Ashby MF (1980) A model for toughness of epoxy-rubber particulate composites. J Mater Sci 15:1109–1123

    Article  CAS  Google Scholar 

  • Lataillade J, Grapotte D, Cayssisals F (1994) The impact resistance of CTBN-modified epoxy adhesive joints. J Phys IV C8:771–776

    Google Scholar 

  • Liang YL, Pearson RA (2010) The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites. Polymer 51:4880–4890

    Article  CAS  Google Scholar 

  • Liu J, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2008) Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41:7616–7624

    Article  CAS  Google Scholar 

  • Liu J, Thompson ZJ, Sue HJ, Bates FS, Hillmyer MA, Dettloff MV, Jacob G, Verghese N, Pham H (2010) Toughening of epoxies with block copolymer micelles of wormlike morphology. Macromolecules 43:7238–7243

    Article  CAS  Google Scholar 

  • Loos MR, Yang J, Feke DL, Manas-Zloczower I (2012a) Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems. Comp Sci Technol 72:482–488

    Article  CAS  Google Scholar 

  • Loos M, Yang J, Feke D, Manas-Zloczower I (2012b) Carbon nanotube-reinforced epoxy composites for wind turbine blades. Society of Plastics Engineers (SPE), Plastics Research Online 10.1002/spepro.004276: 3 pp

    Google Scholar 

  • Lorena RP, Royston GJ, Fairclough PA, Ryan AJ (2008) Toughening by nanostructures. Polymer 49:4475–4488

    Article  Google Scholar 

  • Lovell PA, McDonald J, Saunders DEJ, Young RJ (1993) Studies of rubber-toughened poly(methyl methacrylate): 1. Preparation and thermal properties of blends of poly(methyl methacrylate) with multiple-layer toughening particles. Polymer 34:61–69

    Article  CAS  Google Scholar 

  • Lu C, Mai Y-W (2005) Influence of the aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95:088303

    Article  Google Scholar 

  • Mallozzi ML, Attaguile SM, Baratto DJ (2014) Damage resistant epoxy compounds. Patent No # CA2630583 C

    Google Scholar 

  • Marouf BT, Bagheri R (2010) Physical properties and applications of clay nanofiller/epoxy nanocomposites. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites. Woodhead, Cambridge, UK, pp 743–772

    Chapter  Google Scholar 

  • Marouf BT, Bagheri R, Mahmudi R (2004) Effects of number of layers and adhesive ductility on impact behavior of laminates. Mater Lett 58:2721–2724

    Article  Google Scholar 

  • Marouf BT, Bagheri R, Mahmudi R (2008) Role of interfacial fracture energy and laminate architecture on impact performance of aluminum laminates. Compos Part A 39:1685–1693

    Article  Google Scholar 

  • Marouf BT, Pearson RA, Bagheri R (2009) Anomalous fracture behavior in an epoxy-based hybrid composite. Mater Sci Eng A 515:49–58

    Article  Google Scholar 

  • Marouf BT, Mai Y-W, Bagheri R, Pearson RA (2016) Toughening of epoxy nanocomposites: nano and hybrid effects. Polym Rev Published online 8 January

    Google Scholar 

  • May CA (1988) Introduction to epoxy resins, chemistry and technology. Marcel Dekker, New York, pp 1–6

    Google Scholar 

  • Meeks AC (1974) Fracture and mechanical properties of epoxy resin and rubber-modified epoxies. Polymer 15:675–681

    Article  CAS  Google Scholar 

  • Miyatake N (2013) New advances in core-shell rubber toughening for epoxy resins. JEC Comps Mag, March (issue 79): p85

    Google Scholar 

  • Njuguna J, Pielichowski K, Alcock JR (2007) Epoxy-based fibre reinforced nanocomposites. Adv Eng Mater 9:835–847

    Article  Google Scholar 

  • Oldak RK, Hydro RM, Pearson RA (2007) On the use of triblock copolymers as toughening agents for epoxies. Adhesion Society, Tampa, 3 pp

    Google Scholar 

  • Pearson RA, Yee AF (1989) Toughening mechanisms in elastomer modified epoxies: the effect of cross-link density. J Mater Sci 24:2571–2580

    Article  CAS  Google Scholar 

  • Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  CAS  Google Scholar 

  • Pham H, Aguirre F, Dettloff M, Verghese N (2007) Development of novel toughening technology for fusion-bonded-epoxy (FBE) powder coatings. Paint Coat Ind Mag, October: 4 pp

    Google Scholar 

  • Plastics Europe’s PC/BPA Group (2011) Application of bisphenol A, 34 pp (Available on www.bisphenol-a-europe.org/uploads/EN_BPA%20applications%202.pdf)

  • Plastics Europe’s PC/PBA Group, Bisphenol A epoxy resins (Available on http://www.bisphenol-a-europe.org/en_GB/what-is-bisphenol-a/epoxy-resins)

  • Prolongo SG, Gude MR, Ureña A (2012a) Adhesive strength and toughness improvement of epoxy resin modified with polystyrene-b-polybutadiene-b-poly(methyl methacrylate) block copolymer. J Mater Sci Eng 1:109. doi:10.4172/2169-0022.1000109

    Google Scholar 

  • Prolongo SG, Vadillo V, Gude MR, Sánchez L, Ureña A (2012b) Nanostructured epoxy adhesive modified with self-assembling block copolymers for joining fiber carbon epoxy composites. In: 15th European conference on composite materials (ECCM15), Venice, 24–28 June

    Google Scholar 

  • Pulgisi JS, Chaudhari MA (1988) Epoxies, engineering plastics. ASM International, Metals Park, pp 240–245

    Google Scholar 

  • Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 12:11–21

    Article  CAS  Google Scholar 

  • Rebizant V, Venet AS, Tournilhac F, Girard-Reydet E, Navarro C, Pascault JP, Leibler L (2004) Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 37:8017–8027

    Article  CAS  Google Scholar 

  • Ritzenthaler S, Court F, David L, Girard-Reydet E, Leibler L, Pascault JP (2002) ABC triblock copolymers/epoxy – diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 35:6245–6254

    Article  CAS  Google Scholar 

  • Ruzette AV, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–31

    Article  CAS  Google Scholar 

  • Schoberleitner C, Archodoulaki VC, Koch T, Lüftl S, Werderitsch M, Kuschnig G (2013) Developing a sealing material: effect of epoxy modification on specific physical and mechanical properties. Materials 6:5490–5501

    Article  CAS  Google Scholar 

  • Sprenger S, Eger C, Kinloch AJ, Lee JH, Taylor AC, Egan D (2003) Toughening structural adhesives via nano- and micro-phase inclusions. J Adhes 79:867–873

    Article  Google Scholar 

  • Sprenger S, Eger C, Kinloch AJ, Lee JH, Taylor AC, Egan D (2004) Nanomodified ambient temperature curing epoxy adhesives. Adhäsion Kleben Dichten 3:17–21

    Google Scholar 

  • Sprenger S, Kinloch AJ, Taylor AC, Lee JH, Mohammed RD, Egan D (2006) Improving structural epoxy adhesives with SiO2 nanoparticles. The 29th annual meeting of the Adhesion Society, Jacksonville, 19–22 Feb, 232–234

    Google Scholar 

  • Sprenger S, Kinloch AJ, Taylor AC (2009) Making industrial adhesives tougher. Eur Coatings J 3:9 pp

    Google Scholar 

  • Sultan JN, McGarry FJ (1973) Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polym Eng Sci 13:29–34

    Article  CAS  Google Scholar 

  • Thio YS, Wu J, Bates FS (2006) Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) di-block copolymers. Macromolecules 39:7187–7189

    Article  CAS  Google Scholar 

  • Thompson ZJ, Hillmyer MA, Liu J, Sue HJ, Dettloff MV, Bates FS (2009) Block copolymer toughened epoxy: role of cross-link density. Macromolecules 42:2333–2335

    Article  CAS  Google Scholar 

  • Thompson VP, Watson TF, Marshall GW, Blackman BRK, Stansbury JW, Schadler LS, Pearson RA, Libanori R (2013) Outside-the-(cavity-prep)-box thinking. Adv Dent Res 25:24–32

    Article  CAS  Google Scholar 

  • Three Bond Technical News (1990) Curing agents for epoxy resins. 20 Dec, 10 pp

    Google Scholar 

  • Transparency Market Research (2015) Epoxy resins market for paints & coatings, wind energy, composites, construction, electrical & electronics, adhesives and other applications – Global industry analysis, size, share, growth, trends and forecast 2014–2020, 28 Jan

    Google Scholar 

  • Tripathi G, Srivastava D (2009) Studies on blends of cycloaliphatic epoxy resin with varying concentrations of carboxyl terminated butadiene acrylonitrile copolymer I: thermal and morphological properties. Bull Mater Sci 32:199–204

    Article  CAS  Google Scholar 

  • Turakhia R, Pham H, Jacob G, Hunter G, Hoevel B (2009) Advances in epoxy technology for windmill blade composite fabrication. Thermoset Resin Formulators Association (TRFA), Pittsburgh

    Google Scholar 

  • Utracki LA (2010) Rigid ballistic composites. NRC Publications Archive, Canada: 78 pp

    Google Scholar 

  • Vaziri R, Quan X, Olson MD (1996) Impact analysis of laminated composite plates and shells by super finite elements. Int J Impact Eng 18:765–782

    Article  Google Scholar 

  • Vitale A, Sangermano M, Bongiovanni R, Burtscher P, Moszner N (2014) Visible light curable restorative composites for dental applications based on epoxy monomer. Materials 7:554–562

    Article  Google Scholar 

  • Wang H, Xu Y, Liu Y (2008) Novel modified epoxy adhesive for FCCL with high thermal resistance. IPC Printed Circuits Expo, APEX and the Designers Summit, Las Vegas, 1–3 Apr

    Google Scholar 

  • Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO-PEO diblock copolymer modified epoxy. J Polym Sci Pol Phys 43:1950–1965

    Article  CAS  Google Scholar 

  • www.henkel.com

  • www.kukdo.com

  • www.prweb.com/releases/epoxy_resins/paints_coatings_laminates/prweb8343600.htm

  • www.hiseamarine.com/fnrh-610-rubber-modified-acid-base-resistant-anticorrosive-paint-4374.html, “Rubber-modified acid-base resistant anti-corrosive paint”

  • www.hiseamarine.com/popular-type-modified-epoxy-anticorrosive-paint-2534.html, “Popular type modified epoxy anticorrosive paint”

  • Xie R, Theophanous T, Aguirre F, Verghese N, Valette L, Pham H (2011) Advanced epoxy resins with enhanced toughness for demanding applications. TRFA 2011 annual meeting, Ontario, 11–13 Sept

    Google Scholar 

  • Yee AF, Pearson RA (1986a) Toughening mechanisms in elastomer-modified epoxies: mechanical studies. J Mater Sci 21:2462–2474

    Article  CAS  Google Scholar 

  • Yee AF, Pearson RA (1986b) Toughening mechanisms in elastomer-modified epoxies: microscopy studies. J Mater Sci 21:2475–2488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Marouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Marouf, B.T., Bagheri, R. (2017). Applications of Epoxy/Rubber Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-40043-3_14

Download citation

Publish with us

Policies and ethics