Skip to main content

Thermal Properties of Epoxy/Rubber Blends

  • Reference work entry
  • First Online:
Book cover Handbook of Epoxy Blends

Abstract

The thermal properties of epoxy/rubber blends include glass transition, thermal conductivity, heat capacity, thermal expansion, and thermal stability and are systematically reviewed by a number of thermal analysis techniques including differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The rubbers include usually used natural rubber, polybutadiene rubber, nitrile rubber, polyurethane rubber, silicon rubber, etc. Generally speaking, the addition of a rubber component to the epoxy resin will result in depression of glass transition temperature of it due to incomplete phase separation and incomplete curing reaction. It depends on the cross-linking density of the blends. The thermal conductivity of the blends is affected by the polar nature of rubber. The conductive rubber which is forming a continuous phase could enhance the thermal conductivity. Heat capacity of epoxy/rubber blends is affected not only by the polar nature of rubber but also the density of the formed blends. The thermal expansion behaviors are not only related to thermal and mechanical history but also depend on the network of modified epoxy resin. And further, the thermal stability of epoxy/rubber blends is mainly depending on the thermal stability of the rubber and the cross-linking density of the formed networks. The higher-heat-resistant rubber leads to higher thermal stability of epoxy/rubber blends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Ashraf SM, Sharmin E, Mohomad A, Alam M (2006) Synthesis, formulation, and characterization of siloxane-modified epoxy-based anticorrosive paints. J Appl Polym Sci 100:4981–4991

    Article  CAS  Google Scholar 

  • Bakar M, Duk R, Przybylek M, Kostrzewa M (2009) Mechanical and thermal properties of epoxy resin modified with polyurethane. J Reinf Plast Compos 28:2107–2118

    Article  CAS  Google Scholar 

  • Bernhard W (1990) Thermal analysis. Academic, San Diego

    Google Scholar 

  • Boudenne A, Ibos L, Candau Y (2006) Analysis of uncertainties in thermophysical parameters of materials obtained from a periodic method. Meas Sci Technol 17:1870–1876

    Article  CAS  Google Scholar 

  • Bussi P, Ishida H (1994) Partially miscible blends of epoxy-resin and epoxidized rubber-structural characterization of the epoxidized rubber and mechanical-properties of the blends. J Appl Polym Sci 53:441–454

    Article  CAS  Google Scholar 

  • Chen X, Li S (2001) Further study of sub-Tg heat flow transition of a cured epoxy resin. Macromol Rapid Commun 22:349–352

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Pei X, Wang T (2010) Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J Appl Polym Sci 118:1144–1151

    Article  CAS  Google Scholar 

  • Chen WS, Chang YL, Hsiang HI, Hsu FC, Shen YH, Yen FS (2011a) Mechanical and dielectric properties of NiZn ferrite powders-CTBN modified epoxy resin coatings. Polym Plast Technol Eng 50:568–572

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Wang T (2011b) Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites. Appl Phys A: Mater Sci Process 103:1047–1052

    Article  CAS  Google Scholar 

  • Chiou WC, Yang DY, Han JL, Lee SN (2006) Synthesis and characterization of composites of polyaniline and polyurethane-modified epoxy. Polym Int 55:1222–1229

    Article  CAS  Google Scholar 

  • Chuayjuljit S, Soatthiyanon N, Potiyaraj P (2006) Polymer blends of epoxy resin and epoxidized natural rubber. J Appl Polym Sci 102:452–459

    Article  CAS  Google Scholar 

  • Dehaghi HAA, Mazinani S, Zaarei D, Kalaee M, Jabari H, Sedaghat N (2013) Thermal and morphological characteristics of solution blended epoxy/NBR compound. J Therm Anal Calorim 114:185–194

    Article  Google Scholar 

  • Edith T (1996) Thermal characterization of polymeric materials, 2nd edn. Wiley, New York

    Google Scholar 

  • Gordon M, Taylor JS (1952) Ideal copolymers and the 2nd-order transitions of synthetic rubbers. 1. Noncryst copolym 2:493–500

    CAS  Google Scholar 

  • Gui D, Gao X, Hao J, Liu J (2014) Preparation and characterization of liquid crystalline polyurethane-imide modified epoxy resin composites. Polym Eng Sci 54:1704–1711

    Article  CAS  Google Scholar 

  • Hong SG, Chan CK, Chuang CC, Keong CW, Hsueh YP (2005) The curing behavior and adhesion strength of the epoxidized natural rubber modified epoxy/dicyandiamide system. J Polym Res 12:295–303

    Article  CAS  Google Scholar 

  • Hou SS, Chung YP, Chan CK, Kuo PL (2000) Function and performance of silicone copolymer Part IV Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A. Polymer 41:3263–3272

    Article  CAS  Google Scholar 

  • Jia Q, Zheng M, Chen H, Shen R (2006) Morphologies and properties of polyurethane/epoxy resin interpenetrating network nanocomposites modified with organoclay. Mater Lett 60:1306–1309

    Article  CAS  Google Scholar 

  • Jiang BB, Hao JJ, Wang WY, Jiang LX, Cai XX (2001) Synthesis and thermal properties of poly(urethane-imide). J Appl Polym Sci 81:773–781

    Article  CAS  Google Scholar 

  • Jin H, Zhang Y, Wang C, Sun Y, Yuan Z, Pan Y, Xie H, Cheng R (2014) Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim 117:773–781

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Pionteck J, Hassler R, George SM, Cvelbar U, Thomas S (2011) Studies on stress relaxation and thermomechanical properties of poly(acrylonitrile-butadiene-styrene) modified epoxy-amine systems. Ind Eng Chem Res 50:4432–4440

    Article  CAS  Google Scholar 

  • Kothandaraman B, Kulshreshtha AK (2003) Handbook of polymer blends and composites. In: Vasile C, Kulshreshtha AK (eds) Rubber toughened epoxies/thermosets, 1st edn. Rapra Technology Limited, Shrewbury, pp 441–459

    Google Scholar 

  • Kumar KD, Kothandaraman B (2008) Modification of (DGEBA) epoxy resin with maleated depolymerised natural rubber. Express Polym Lett 2:302–311

    Article  CAS  Google Scholar 

  • Kumar SA, Narayanan T (2002) Thermal properties of siliconized epoxy interpenetrating coatings. Prog Org Coat 45:323–330

    Article  Google Scholar 

  • Li S, Shen J, Chen X, Chen R, Luo X (1997) Studies on relaxation and thermal expansion behavior of polysiloxane-modified epoxy resin. J Macromol Sci, Part B 36:357–366

    Article  Google Scholar 

  • Lin SP, Han JL, Yeh JT, Chang FC, Hsieh KH (2007) Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks. Eur Polym J 43:996–1008

    Article  CAS  Google Scholar 

  • Liu W, Ma S, Wang Z, Hu C, Tang C (2010) Morphologies and mechanical and thermal properties of highly epoxidized polysiloxane toughened epoxy resin composites. Macromol Res 18:853–861

    Article  Google Scholar 

  • Ma S, Liu W, Hu C, Wang Z, Tang C (2010) Toughening of epoxy resin system using a novel dendritic polysiloxane. Macromol Res 18:392–398

    Article  CAS  Google Scholar 

  • Mathew VS, George SC, Parameswaranpillai J, Thomas S (2014) Epoxidized natural rubber/epoxy blends: phase morphology and thermomechanical properties. J Appl Polym Sci 131. doi:10.1002/APP.39906

    Google Scholar 

  • Morton M (1981) History of synthetic rubber. J Macromol Sci-Chem 15:1289–1302

    Article  Google Scholar 

  • Nigam V, Setua DK, Mathur GN (2001) Characterization of rubber epoxy blends by thermal analysis. J Therm Anal Calorim 6:521–527

    Article  Google Scholar 

  • Ozturk A, Kaynak C, Tincer T (2001) Effects of liquid rubber modification on the behaviour of epoxy resin. Eur Polym J 37:2353–2363

    Article  CAS  Google Scholar 

  • Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250

    Article  CAS  Google Scholar 

  • Petri EM (2005) Epoxy adhesive formulations. McGRAW-HILL, New York

    Google Scholar 

  • Ratna D, Simon GP (2001) Mechanical characterization and morphology of carboxyl randomized poly(2-ethyl hexyl acrylate) liquid rubber toughened epoxy resins. Polymer 42:7739–7747

    Article  CAS  Google Scholar 

  • Raymond MP, Bui VT (1998) Epoxy/castor oil graft interpenetrating polymer networks. J Appl Polym Sci 70:1649–1659

    Article  CAS  Google Scholar 

  • Raymond S, Charles C (1984) Structure–property relationships in polymers. Springer, New York

    Google Scholar 

  • Smith CG, Smith PB, Pasztor AJ, McKelvy ML, Meunier DM, Froelicher SW, Ellaboudy ES (1993) Analysis of synthetic polymers and rubbers. Anal Chem 65:217–243

    Article  Google Scholar 

  • Tang LC, Wang X, Wan YJ, Wu LB, Jiang JX, Lai GQ (2013) Mechanical properties and fracture behaviors of epoxy composites with multi-scale rubber particles. Mater Chem Phys 141:333–342

    Article  CAS  Google Scholar 

  • Tang B, Liu X, Zhao X, Zhang J (2014) Highly efficient in situ toughening of epoxy thermosets with reactive hyperbranched polyurethane. J Appl Polym Sci 131. doi:10.1002/APP.40614

    Google Scholar 

  • Thomas R, Abraham J, Thomas S, Thomas S (2004) Influence of carboxyl-terminated (butadiene-co-acrylonitrile) loading on the mechanical and thermal properties of cured epoxy blends. J Polym Sci Part B-Polym Phys 42:2531–2544

    Article  CAS  Google Scholar 

  • Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, Moldenaers P, Thomas S (2007) Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin - Effects of a liquid rubber inclusion. Polymer 48:1695–1710

    Article  CAS  Google Scholar 

  • Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomas S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  • Thomas R, Boudenne A, Ibos L, Candau Y, Thomas S (2010) Thermophysical properties of CTBN and HTPB liquid rubber modified epoxy blends. J Appl Polym Sci 116:3232–3241

    CAS  Google Scholar 

  • Tripathi G, Srivastava D (2007) Effect of carboxyl-terminated poly (butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. Mater Sci Eng A-Struct Mater Prop Microstruct Process 443:262–269

    Article  Google Scholar 

  • Tripathi G, Srivastava D (2008) Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3,4 epoxy cyclohexylmethyl, 3′, 4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Mater Sci Eng A-Struct Mater Prop Microstruct Process 496:483–493

    Article  Google Scholar 

  • Tripathi G, Srivastava D (2009) Studies on blends of cycloaliphatic epoxy resin with varying concentrations of carboxyl terminated butadiene acrylonitrile copolymer I: thermal and morphological properties. Bull Mater Sci 32:199–204

    Article  CAS  Google Scholar 

  • Vijayan PP, Puglia D, Maria HJ, Kenny JM, Thomas S (2013) Clay nanostructure and its localisation in an epoxy/liquid rubber blend. Rsc Adv 3:24634–24643

    Article  Google Scholar 

  • Wang XR, Gillham JK (1993) Physical aging in the glassy state of a thermosetting system vs extent of cure. J Appl Polym Sci 47:447–460

    Article  CAS  Google Scholar 

  • Wang Q, Chen S, Wang T, Zhang X (2011) Damping, thermal, and mechanical properties of polyurethane based on poly(tetramethylene glycol)/epoxy interpenetrating polymer networks: effects of composition and isocyanate index. Appl Phys A: Mater Sci Process 104:375–382

    Article  CAS  Google Scholar 

  • Watanabe H (1999) Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci 24:1253–1403

    Article  CAS  Google Scholar 

  • Yang JH (2004) Theory of thermal conductivity. In: Tritt TM (ed) Thermal conductivity: theory, properties, and applications, 1st edn. Kluwer Academic, New York, pp 1–17

    Google Scholar 

  • Zhang X, Ji S, Quan Y, Chen Q, Chang P (2010) Structure, mechanical properties, and gas permeability of elastomers based on polybutadiene and epoxy resin. J Appl Polym Sci 117:2366–2372

    Article  CAS  Google Scholar 

  • Zheng SX, Wang HQ, Dai QH, Luo XL, Ma DH, Wang K (1995) Morphology and structure of organosilicon polymer-modified epoxy-resins. Macromol Chem Phys 196:269–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoubing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Chen, S., Wang, T., Wang, Q. (2017). Thermal Properties of Epoxy/Rubber Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-40043-3_10

Download citation

Publish with us

Policies and ethics