Skip to main content

Impact of Low-Salt Diet

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Studies in experimental animals and in groups of humans and epidemiological studies have shown that the sodium chloride or salt (sodium, Na, NaCl) plays an important role mainly in the regulation of blood pressure and represents an important environmental factor involved in the genesis of cardiovascular diseases. Therefore, salt intake in the population has been a constant concern. Variable blood pressure responses to different content in sodium intake are found in experimental hypertension models and in humans, and the reasons for such heterogeneity are not fully elucidated. The reduction of dietary sodium intake is recommended by public health as one of the non-medicated treatments for hypertension and consequently reducing the risk of cardiovascular diseases. However, some studies have demonstrated side effects of salt dietary restriction, reporting changes in glucose metabolism (hyperinsulinemia and insulin resistance), and these alterations are gender and time specific in experimental and population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CHD:

Coronary heart disease

CI:

Confidence interval

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

HOMA-IR:

Homeostasis model of assessment

LS:

Low-salt diet

RAAS:

Renin angiotensin aldosterone system

References

  • Aburto NJ, Ziolkovska A, Hooper L (2013) Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346:f1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguirre V, Werner ED, Giraud J et al (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277(2):1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Alderman MH, Sealey JE, Cohen H et al (1997) Urinary sodium excretion and myocardial infarction in hypertensive patients: a prospective cohort study. Am J Clin Nutr 65(suppl):682–66S

    Google Scholar 

  • Alves-Rodrigues EN, Veras MM, Rosa KT et al (2013) Salt intake during pregnancy alters offspring's myocardial structure. Nutr Metab Cardiovasc Dis 23(5):481–486

    Article  CAS  PubMed  Google Scholar 

  • Battista MC, Oligny LL, St-Louis J et al (2002) Intrauterine growth restriction in rats is associated with hypertension and renal dysfunction in adulthood. Am J Physiol Endocrinol Metab 283(1):E124–E131

    Article  CAS  PubMed  Google Scholar 

  • Bibbins-Domingo K, Chertow GM, Coxson PG et al (2010) Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 362(7):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst MH, Navis G (2016) Sodium intake, RAAS-blockade and progressive renal disease. Pharmacol Res 107:344–351

    Article  PubMed  Google Scholar 

  • Catanozi S, Rocha JC, Nakandakare ER et al (2001) The rise of the plasma lipid concentration elicited by dietary sodium chloride restriction in Wistar rats is due to an impairment of the plasma triacylglycerol removal rate. Atherosclerosis 158(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Catanozi S, Rocha JC, Passarelli M et al (2003) Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice. J Lipid Res 44(4):727–732

    Article  CAS  PubMed  Google Scholar 

  • Coelho MS, Passadore MD, Gasparetti AL et al (2006) High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats. Nutr Metab Cardiovasc Dis 16(2):148–155

    Article  CAS  PubMed  Google Scholar 

  • Cook NR, Appel LJ, Whelton PK (2014) Lower levels of sodium intake and reduced cardiovascular risk. Circulation 129(9):981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekinci EI, Thomas G, Thomas D et al (2009) Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake. Diabetes Care 32:1398–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusco FB, Gomes DJ, Bispo KCS et al (2017) Low-sodium diet induces atherogenesis regardless of lowering blood pressure in hypertensive hyperlipidemic mice. PLoS One 12(5):e0177086. https://doi.org/10.1371/journal.pone.0177086

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg R, Williams GH, Hurwitz S et al (2011) Low-salt diet increases insulin resistance in healthy subjects. Metabolism 60(7):965–968. https://doi.org/10.1016/j.metabol.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  • Graudal NA, Hubeck-Graudal T, Jürgens G (2012) Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (cochrane review). Am J Hypertens 25(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • He FJ, MacGregor GA (2002) Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J Hum Hypertens 16:761–770

    Article  CAS  PubMed  Google Scholar 

  • He FJ, MacGregor GA (2003) How far should salt intake be reduced? Hypertension 42:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • He FJ, MacGregor GA (2009) A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens 23:363–384

    Article  CAS  PubMed  Google Scholar 

  • Hocherl K, Kammerl MC, Schumacher K et al (2002) Role of prostanoids in regulation of the renin-angiotensin aldosterone system by salt intake. Am J Physiol Ren Physiol 283:F294–F301

    Article  CAS  Google Scholar 

  • Ingert C, Grima M, Coquard C et al (2002) Effects of dietary salt changes on renal renin-angiotensin system in rats. Am J Physiol Ren Physiol 283(5):F995–1002

    Article  Google Scholar 

  • Johnson RJ, Herrera-Acosta J, Schreiner GF et al (2002) Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med 346(12):913–923

    Article  CAS  PubMed  Google Scholar 

  • KDOQI (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49(Suppl 2):S12–S154

    Google Scholar 

  • Kittikulsuth W, Pollock JS, Pollock DM (2012) Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am J Physiol Ren Physiol 303(5):F659–F666

    Article  CAS  Google Scholar 

  • Kwakernaak AJ, Krikken JA, Binnenmars SH et al (2014) Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol 2:385–395

    Article  CAS  PubMed  Google Scholar 

  • Leandro SM, Furukawa LN, Shimizu MH et al (2008) Low birth weight in response to salt restriction during pregnancy is not due to alterations in uterine-placental blood flow or the placental and peripheral renin-angiotensin system. Physiol Behav 95(1–2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Lopes KL, Furukawa LN, de Oliveira IB et al (2008) Perinatal salt restriction: a new pathway to programming adiposity indices in adult female Wistar rats. Life Sci 82(13–14):728–732

    Article  CAS  PubMed  Google Scholar 

  • Mills KT, Chen J, Yang W et al (2016) Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 315:2200–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moher D, Cook DJ, Eastwood S et al (1999) Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Quality of reporting of meta-analyses. Lancet 354:1896–1900

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D, Fahimi S, Singh GM et al (2014) Global sodium consumption and death from cardiovascular causes. N Engl J Med 371:624–634

    Article  PubMed  Google Scholar 

  • Okamoto MM, Sumida DH, Carvalho CR et al (2004) Changes in dietary sodium consumption modulate GLUT4 gene expression and early steps of insulin signaling. Am J Phys Regul Integr Comp Phys 286:R779–R785

    CAS  Google Scholar 

  • Prada P, Okamoto MM, Furukawa LN et al (2000) High- or low-salt diet from weaning to adulthood: effect on insulin sensitivity in Wistar rats. Hypertension 35(1 Pt 2):424–429

    Article  CAS  PubMed  Google Scholar 

  • Prada PO, Coelho MS, Zecchin HG et al (2005) Low salt intake modulates insulin signaling, JNK activity and IRS-1ser307 phosphorylation in rat tissues. J Endocrinol 185(3):429–437

    Article  CAS  PubMed  Google Scholar 

  • Ruivo GF, Leandro SM, do Nascimento CA et al (2006) Insulin resistance due to chronic salt restriction is corrected by alpha and beta blockade and by l-arginine. Physiol Behav 88(4–5):364–370

    Article  CAS  PubMed  Google Scholar 

  • Seravalli P, de Oliveira IB, Zago BC et al (2016) High and low salt intake during pregnancy: impact on cardiac and renal structure in newborns. PLoS One 11(8):e0161598

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivritas SH, Ploth DW, Fitzgibbon WR (2008) Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet. Am J Physiol Ren Physiol 295:F811–F817

    Article  CAS  Google Scholar 

  • Slagman MC, Waanders F, Hemmelder MH et al (2011) Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 343:d4366

    Article  PubMed  PubMed Central  Google Scholar 

  • Susic D, Frohlich ED (2012) Salt consumption and cardiovascular, renal, and hypertensive diseases: clinical and mechanistic aspects. Curr Opin Lipidol 23:11–16

    Article  CAS  PubMed  Google Scholar 

  • Vidonho AF Jr, da Silva AA, Catanozi S et al (2004) Perinatal salt restriction: a new pathway to programming insulin resistance and dyslipidemia in adult wistar rats. Pediatr Res 56(6):842–848

    Article  CAS  PubMed  Google Scholar 

  • Vogt L, Waanders F, Boomsma F et al (2008) Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol 19:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2007) Reducing salt intake in populations: report of a WHO forum and technical meeting. WHO, Paris, pp 1–60

    Google Scholar 

  • Xavier AR, Garófalo MA, Migliorini RH, Kettelhut IC (2003) Dietary sodium restriction exacerbates age-related changes in rat adipose tissue and liver lipogenesis. Metabolism 52:1072–1077

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzia Naôko Shinohara Furukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

de Siqueira, F.R., de Oliveira, K.C., Heimann, J.C., Furukawa, L.N.S. (2017). Impact of Low-Salt Diet. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics