Selenium and Cognition: Mechanism and Evidence

Living reference work entry

Latest version View entry history

Abstract

Selenium (Se) is important for cognition by way of its contribution to the reduction of oxidative stress. Reactive species (RS) are generated during the normal course of metabolism in the body. Evidence shows that RS are known to regulate cellular functions. They also participate in the immune system and biosynthesis of macromolecules. On the other hand, accumulated RS are highly toxic to the body and they are major concern in the pathogenesis of chronic diseases including cancers, cardiovascular disease, and neurodegenerative diseases. Every aerobic cell is vulnerable to attack by RS consequently, resulting in oxidative stress. However, the brain is particularly susceptible to oxidative stress due to its composition and physiology. Oxidative stress to the brain is associated with cognitive deficits, mood disorders, and behavioral problems. Evidence from animal and human studies suggest the importance of selenium for cognitive performance, mood, and behavior through protection against oxidative damage to substrates including low-density lipoproteins (LDL), hydroperoxide, hydrogen peroxide, peroxynitrite, and tert-butyl hydroxyperoxide (t-BHP). The dose response relationship between Se and cognitive performance is nonlinear suggesting both deficiency and excess intake results in adverse neurobehavioral outcomes. In addition, through its role in thyroid metabolism, limited evidence suggests the importance of selenium in improving cognitive performance of persons with hypothyroidism.

Keywords

Alzheimer’s disease Antioxidant Brain Cognition Depression Oxidative stress Mood Reactive oxygen species Selenoproteins Selenium 

List of Abbreviations

AD

Alzheimer’s disease

ATP

Adenosine triphosphate

CSF

Cerebrospinal fluid

CuZn-SOD

Copper, zinc-superoxide dismutase

DNA

Deoxyribonucleic acid

GHS

Glutathione

GPx

Glutathione peroxidase

IL-6

Interleukin-6

LDL

Low density lipoprotein

MCI

Mild cognitive impairment

NBNA

Behavioral neurological assessment

PKU

Phenylketonuria

RNA

Ribonucleic acid

ROS

Reactive oxygen species

RS

Reactive species

rT3

Reverse triiodothyronine

SeMet

Selenomethionine

SePP

Selenoprotein P

SOD

Superoxide dismutase

T4

Thyroxin

T3

Tri-iodothyronine

T2

Di-iodothyronine

TBARS

Thiobarbituric acid reactive substances

t-BHP

Tert-butyl hydroxyperoxide

TrxR

Thioredoxin reductase

References

  1. Ahmed OM, El-Gareib AW, El-Bakry AM et al (2008) Thyroid hormones states and brain development interactions. Int J Neurosci 26:147–209Google Scholar
  2. Akbaraly NT, Hininger-Favier I, Carriere I et al (2007) Plasma selenium over time and cognitive decline in the elderly. Epidemiology 18:52–58CrossRefGoogle Scholar
  3. Aksenov MY, Aksenova MV, Butterfield DA et al (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383CrossRefGoogle Scholar
  4. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 936486Google Scholar
  5. Arteel GE, Sies H (2001) The biochemistry of selenium and the glutathione system. Environ Toxicol Pharmacol 10:153–158CrossRefGoogle Scholar
  6. Battin EE, Zimmerman MT, Ramoutar RR et al (2011) Preventing metal-mediated oxidative DNA damage with selenium compounds. Metallomics 3:503–512CrossRefGoogle Scholar
  7. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465CrossRefGoogle Scholar
  8. Bellinger FP, He QP, Bellinger MT et al (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15:465–472CrossRefGoogle Scholar
  9. Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259CrossRefGoogle Scholar
  10. Berr C, Arnaud J, Akbaraly TN (2012) Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors 38:139–144CrossRefGoogle Scholar
  11. Berr C, Balansard B, Arnaud J et al (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291CrossRefGoogle Scholar
  12. Berr C, Richard MJ, Gourlet V et al (2004) Enzymatic antioxidant balance and cognitive decline in aging – the EVA study. Eur J Epidemiol 19:133–138CrossRefGoogle Scholar
  13. Brieger K, Schiavone S, Miller FJ Jr et al (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659PubMedGoogle Scholar
  14. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. BBA-Gen Subjects 1830:3289–3303CrossRefGoogle Scholar
  15. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599CrossRefGoogle Scholar
  16. Burk RF, Hill KE, Motley AK et al (2006) Deletion of selenoprotein P up regulates urinary selenium excretion and depresses whole-body selenium content. BBA-Gen Subjects 1760:1789–1793CrossRefGoogle Scholar
  17. Burk RF, Hill KE, Read ROBERT et al (1991) Response of rat selenoprotein P to selenium administration and fate of its selenium. Am J Physiol-Endoc Metab 261:E26–E30CrossRefGoogle Scholar
  18. Butterfield DA, Drake J, Pocernich C et al (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554CrossRefGoogle Scholar
  19. Cardoso BR, Bandeira VS, Jacob-Filho W et al (2014) Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol 28:422–426CrossRefGoogle Scholar
  20. Cardoso BR, Ong TP, Jacob-Filho W et al (2010) Nutritional status of selenium in Alzheimer’s disease patients. Brit J Nutr 103:803–806CrossRefGoogle Scholar
  21. Castaño A, Ayala A, Rodrıguez-Gómez JA et al (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555CrossRefGoogle Scholar
  22. Clouchoux C, Guizard N, Evans AC et al (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206:173–1e1CrossRefGoogle Scholar
  23. Cui K, Luo X, Xu K et al (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-Psychoph 28:771–799CrossRefGoogle Scholar
  24. Datta K, Sinha S, Chattopadhyay P (2000) Reactive oxygen species in health and disease. Natl Med J India 13:304–310PubMedGoogle Scholar
  25. del Ser QT, Delgado C, Martínez ES et al (2000) Cognitive deficiency in mild hypothyroidism. Neurologia 15:193–198Google Scholar
  26. Dias GRM, Vieira FA, Dobrachinski F et al (2012) Diphenyl diselenide diet intake improves spatial learning and memory deficits in hypothyroid female rats. Int J Dev Neurosci 30:83–89CrossRefGoogle Scholar
  27. Farkas IG, Czigner A, Farkas E et al (2003) Beta-amyloid peptide-induced blood-brain barrier disruption facilitates T-cell entry into the rat brain. Acta Histochem 105:115–125CrossRefGoogle Scholar
  28. Fukui K, Omoi NO, Hayasaka T et al (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284CrossRefGoogle Scholar
  29. Gao S, Jin Y, Hall KS et al (2007) Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165:955–965CrossRefGoogle Scholar
  30. Gashu D, Stoecker BJ, Bougma K et al (2016) Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutr J 15:38CrossRefGoogle Scholar
  31. Gassió R, Artuch R, Vilaseca MA et al (2008) Cognitive functions and the antioxidant system in phenylketonuric patients. Neuropsychology 2:426CrossRefGoogle Scholar
  32. Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620SPubMedGoogle Scholar
  33. Hall J, Edwards M, Barber R et al (2012) Higher groundwater selenium exposure is associated with better memory: a project FRONTIER study. Neurosci Med 3:18–25CrossRefGoogle Scholar
  34. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefGoogle Scholar
  35. Hawkes WC, Hornbostel L (1996) Effects of dietary selenium on mood in healthy men living in a metabolic research unit. Biol Psychiatry 39:121–128CrossRefGoogle Scholar
  36. Hill KE, Zhou J, McMahan WJ et al (2004) Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J Nutr 134:157–161CrossRefGoogle Scholar
  37. Hong LL, Tian DP, Su M et al (2006) Effect of selenium deficiency on the F344 inbred line offspring rats’ neuro-behavior, ability of learning and memory. Wei sheng yanjiu 35:54–58Google Scholar
  38. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Bio Med 34:145–169CrossRefGoogle Scholar
  39. Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156CrossRefGoogle Scholar
  40. Kim HC, Jhoo WK, Shin EJ et al (2000) Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss; comparison with MPTP model. Brain Res 862:247–252CrossRefGoogle Scholar
  41. Klein RZ, Sargent JD, Larsen PR et al (2001) Relation of severity of maternal hypothyroidism to cognitive development of offspring. J Med Screen 8:18–20CrossRefGoogle Scholar
  42. Kunwar A, Mishra B, Barik A et al (2007) 3, 3′-Diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem Res Toxicol 20:1482–1487CrossRefGoogle Scholar
  43. Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. BBA-Mol Basis Dis 1822:631–638CrossRefGoogle Scholar
  44. Mehdi Y, Hornick JL, Istasse L et al (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311CrossRefGoogle Scholar
  45. Miller AH, Maletic V, Raison C (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741CrossRefGoogle Scholar
  46. Mineo TC, Sellitri F, Tacconi F et al (2014) Erythrocyte osmotic resistance recovery after lung volume reduction surgery. Eur J Cardiothorac Surg 45:870–875CrossRefGoogle Scholar
  47. Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radical Bio Med 44:1493–1505CrossRefGoogle Scholar
  48. Nakayama A, Hill KE, Austin LM et al (2007) All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr 137:690–693CrossRefGoogle Scholar
  49. Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141CrossRefGoogle Scholar
  50. Nishina A, Kimura H, Kozawa K et al (2011) A superoxide anion-scavenger, 1, 3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase. Toxicol Appl Pharmacol 257:388–395CrossRefGoogle Scholar
  51. Pasco JA, Jacka FN, Williams LJ et al (2012) Dietary selenium and major depression: a nested case-control study. Complement Ther Med 20:119–123CrossRefGoogle Scholar
  52. Peters MM, Hill KE, Burk RF et al (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener 1:12CrossRefGoogle Scholar
  53. Pol CJ, Muller A, Simonides WS (2010) Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem? Heart Fail Rev 15:133–142CrossRefGoogle Scholar
  54. Polanska K, Krol A, Sobala W et al (2016) Selenium status during pregnancy and child psychomotor development – polish mother and child cohort study. Pediatr Res 79:863–869CrossRefGoogle Scholar
  55. Rayman M, Thompson A, Warren-Perry M et al (2006) Impact of selenium on mood and quality of life: a randomized, controlled trial. Biol Psychiatry 59:147–154CrossRefGoogle Scholar
  56. Richwine AF, Godbout JP, Berg BM et al (2005) Improved psychomotor performance in aged mice fed diet high in antioxidants is associated with reduced ex vivo brain interleukin-6 production. Brain Behav Immun 19:512–520CrossRefGoogle Scholar
  57. Ryu JK, McLarnon JG (2009) A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925CrossRefGoogle Scholar
  58. Skröder HM, Hamadani JD, Tofail F et al (2015) Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin Nutr 34:923–930CrossRefGoogle Scholar
  59. Smorgon C, Mari E, Atti AR et al (2004) Trace elements and cognitive impairment: an elderly cohort study. Arch Gerontol Geriatr 38:393–402CrossRefGoogle Scholar
  60. Steinbrenner H, Alili L, Bilgic E et al (2006a) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radical Bio Med 40:1513–1523CrossRefGoogle Scholar
  61. Steinbrenner H, Bilgic E, Alili L et al (2006b) Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 40:936–943CrossRefGoogle Scholar
  62. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. BBA-Gen Subjects 1790:1478–1485CrossRefGoogle Scholar
  63. Takahashi H, Nishina A, Fukumoto RH et al (2005a) Selenocarbamates are effective superoxide anion scavengers in vitro. Eur J Pharm Sci 24:291–295CrossRefGoogle Scholar
  64. Takahashi H, Nishina A, Fukumoto RH et al (2005b) Selenoureas and thioureas are effective superoxide radical scavengers in vitro. Life Sci 76:2185–2192CrossRefGoogle Scholar
  65. Takahashi H, Nishina A, Kimura H et al (2004) Tertiary selenoamide compounds are useful superoxide radical scavengers in vitro. Eur J Pharm Sci 23:207–211CrossRefGoogle Scholar
  66. Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 20:S1PubMedPubMedCentralGoogle Scholar
  67. Traulsen H, Steinbrenner H, Buchczyk DP et al (2004) Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic Res 38:123–128CrossRefGoogle Scholar
  68. Valentine WM, Abel TW, Hill KE et al (2008) Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J Neuropathol Exp Neurol 67:68–77CrossRefGoogle Scholar
  69. van Bakel MM, Printzen G, Wermuth B et al (2000) Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981CrossRefGoogle Scholar
  70. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5:51–66CrossRefGoogle Scholar
  71. World Health Organization (1996) Trace elements in human nutrition and health. World Health Organization, GenevaGoogle Scholar
  72. Xiong S, Markesbery WR, Shao C et al (2007) Seleno-L-methionine protects against β-amyloid and iron/hydrogen peroxide-mediated neuron death. Antioxid Redox Signal 9:457–467CrossRefGoogle Scholar
  73. Yang X, Yu X, Fu H et al (2013) Different levels of prenatal zinc and selenium had different effects on neonatal neurobehavioral development. Neurotoxicology 37:35–39CrossRefGoogle Scholar
  74. Zhou X, Smith AM, Failla ML et al (2012) Estrogen status alters tissue distribution and metabolism of selenium in female rats. J Nutr Biochem 23:532–538CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Department of Nutritional SciencesOklahoma State UniversityStillwaterUSA

Personalised recommendations