Skip to main content

Technical Approaches for Desalination and Water Supplies for Drought

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation
  • 324 Accesses

Abstract

Providing clean water for human consumption has become a major challenge at local, regional, national, and global levels due to excess population growth. The direct domestic water demand and the indirect industrial, agricultural, and environmental water needs to sustain this growth is expected to place serious strains on the currently available water resources. Water reuse and desalination technologies can provide a solution to this issue if implemented in a sustainable manner. Provision of clean water inevitably requires energy, which is currently being provided essentially by nonrenewable fossil fuels which is not a sustainable approach. This chapter discusses various options available for enhancing water supply in drought regions. Water reuse and desalination technologies have been discussed in detail. Energy needs and integration of renewable energy sources, energy recovery and process integration concepts have been discussed. Future research directions to develop energy-efficient water supply technologies are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adham SS, Jacangelo JG, Laine JM (1996) Characteristics and costs of MF and UF plants. Am Water Works Assoc J 88(5):22

    CAS  Google Scholar 

  • Al-Shammiri M, Safar M (1999) Multi-effect distillation plants: state of the art. Desalination 126(1-3):45–59

    Article  CAS  Google Scholar 

  • Al-Sheikh AH (1997) Seawater reverse osmosis pretreatment with an emphasis on the Jeddah Plant operation experience. Desalination 110(1-2):183–192

    Article  Google Scholar 

  • Amjad Z (1997) RO systems: current fouling problems and solutions. Int Desalin Water Reuse Q 6:55–59

    CAS  Google Scholar 

  • Ayyash Y, Imai H, Yamada T, Fukuda T, Yanaga Y, Taniyama T (1994) Performance of reverse osmosis membrane in Jeddah Phase I plant. Desalination 96(1-3):215–224

    Article  CAS  Google Scholar 

  • Baker RW (2000) Membrane technology and applications. McGraw Hill, New York

    Google Scholar 

  • Bayod-Rujula AA, Martinez-Gracia A (2009) Photovoltaic system for brackish water desalination by electrodialysis and electricity generation. Desalin Water Treat 7(1-3):142–151

    Article  CAS  Google Scholar 

  • Camacho LM, Dumée L, Zhang J, Li JD, Duke M, Gomez J, Gray S (2013) Advances in membrane distillation for water desalination and purification applications. Water 5(1):94–196

    Article  Google Scholar 

  • Cath TY, Adams D, Childress AE (2005) Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J Membr Sci 257(1):111–119

    Article  CAS  Google Scholar 

  • Darwish MA, Al Asfour F, Al-Najem N (2003) Energy consumption in equivalent work by different desalting methods: case study for Kuwait. Desalination 152(1-3):83–92

    Article  CAS  Google Scholar 

  • Duin O, Wessels P, van der Roest H, Uijterlinde C, Schoonewille H (2000) Direct nanofiltration or ultrafiltration of WWTP effluent? Desalination 132(1):65–72

    Article  CAS  Google Scholar 

  • Durham B, Walton A (1999) Membrane pretreatment of reverse osmosis: long-term experience on difficult waters. Desalination 122(2):157–170

    Article  CAS  Google Scholar 

  • Ehrlich PR, Ehrlich AH (1993) Why isn’t everyone as scared as we are. In: Valuing the earth. Economics, ecology, ethics, The MIT Press, Cambridge, MA, USA. pp 55–112

    Google Scholar 

  • El-Nashar AM (2001) Cogeneration for power and desalination—state of the art review. Desalination 134(1):7–28

    Article  CAS  Google Scholar 

  • Fast SA, Gude VG, Truax DD, Martin J, Magbanua BS (2017) A critical evaluation of advanced oxidation processes for emerging contaminants removal. Environ Processes:1–20

    Google Scholar 

  • Gleick PH (2006) Water and terrorism. Water Policy 8(6):481–503

    Article  Google Scholar 

  • Glucina K, Alvarez A, Laîné JM (2000) Assessment of an integrated membrane system for surface water treatment. Desalination 132(1):73–82

    Article  CAS  Google Scholar 

  • Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348

    Article  CAS  PubMed  Google Scholar 

  • Gude VG (2011) Energy consumption and recovery in reverse osmosis. Desalin Water Treat 36(1-3):239–260

    Article  CAS  Google Scholar 

  • Gude VG (2015a) Energy and water autarky of wastewater treatment and power generation systems. Renew Sust Energ Rev 45:52–68

    Article  Google Scholar 

  • Gude VG (2015b) Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl Energy 137:877–898

    Article  Google Scholar 

  • Gude VG (2016a) Desalination and sustainability–an appraisal and current perspective. Water Res 89:87–106

    Article  CAS  PubMed  Google Scholar 

  • Gude VG (2016b) Geothermal source potential for water desalination–current status and future perspective. Renew Sust Energ Rev 57:1038–1065

    Article  Google Scholar 

  • Gude VG, Nirmalakhandan N (2008) Desalination using low-grade heat sources. J Energy Eng 134(3):95–101

    Article  Google Scholar 

  • Gude VG, Nirmalakhandan N, Deng S (2010) Renewable and sustainable approaches for desalination. Renew Sust Energ Rev 14(9):2641–2654

    Article  CAS  Google Scholar 

  • Gude VG, Nirmalakhandan N, Deng S (2011a) Integrated PV-thermal system for desalination and power production. Desalin Water Treat 36(1-3):129–140

    Article  CAS  Google Scholar 

  • Gude VG, Nirmalakhandan N, Deng S (2011b) Sustainable low temperature desalination: a case for renewable energy. J Renewable Sustainable Energy 3(4):043108

    Article  Google Scholar 

  • Gude VG, Nirmalakhandan N, Deng S, Maganti A (2012) Desalination at low temperatures: an exergy analysis. Desalin Water Treat 40(1-3):272–281

    Article  CAS  Google Scholar 

  • Gude VG, Truax DD, Magbanua BS (2013) Natural treatment and onsite processes. Water Environ Res 85(10):1232–1261

    Article  Google Scholar 

  • Hamad A, Abdul-Karim M (2005) Desalination using ambient air: simulation and energy optimization. Desalination 175(3):247–257

    Article  CAS  Google Scholar 

  • Hamoda MF (2004) Water strategies and potential of water reuse in the south Mediterranean countries. Desalination 165:31–41

    Article  CAS  Google Scholar 

  • Jacangelo JG, Trussell RR, Watson M (1997) Role of membrane technology in drinking water treatment in the United States. Desalination 113(2-3):119–127

    Article  CAS  Google Scholar 

  • Judd S, Jefferson B (eds) (2003) Membranes for industrial wastewater recovery and re-use. Elsevier. ISBN: 978-1-85617-389-6

    Google Scholar 

  • Kalogirou S (1997) Survey of solar desalination systems and system selection. Energy 22(1):69–81

    Article  CAS  Google Scholar 

  • Khawaji AD, Kutubkhanah IK, Wie JM (2008) Advances in seawater desalination technologies. Desalination 221(1-3):47–69

    Article  CAS  Google Scholar 

  • Martinez-Guerra E, Jiang Y, Lee G, Kokabian B, Fast S, Truax DD, Martin JL, Magbanua BS, Gude VG (2015) Wetlands for wastewater treatment. Water Environ Res 87(10):1095–1126

    Article  CAS  PubMed  Google Scholar 

  • McFalls JA Jr (1991) Population: a lively introduction. Popul Bull 46(2):n2

    Google Scholar 

  • Mehdizadeh H (2006) Membrane desalination plants from an energy–exergy viewpoint. Desalination 191(1-3):200–209

    Article  CAS  Google Scholar 

  • Michels T (1993) Recent achievements of low temperature multiple effect desalination in the western areas of Abu Dhabi. UAE. Desalination 93(1-3):111–118

    Article  CAS  Google Scholar 

  • Miller GW (2006) Integrated concepts in water reuse: managing global water needs. Desalination 187(1):65–75

    Article  Google Scholar 

  • Misra BM, Kupitz J (2004) The role of nuclear desalination in meeting the potable water needs in water scarce areas in the next decades. Desalination 166:1–9

    Article  CAS  Google Scholar 

  • Mohsen MS, Al-Jayyousi OR (1999) Brackish water desalination: an alternative for water supply enhancement in Jordan. Desalination 124(1):163–174

    Article  CAS  Google Scholar 

  • National Research Council (2008) Desalination: a national perspective. National Academies Press, Washington D.C., USA

    Google Scholar 

  • National Research Council (2012) Water reuse: potential for expanding the nation's water supply through reuse of municipal wastewater. National Academies Press, Washington D.C., USA

    Google Scholar 

  • Ophir A, Lokiec F (2005) Advanced MED process for most economical sea water desalination. Desalination 182(1-3):187–198

    Article  CAS  Google Scholar 

  • Ophir A, Gendel A, Kronenberg G (1994) The LT-MED process for SW Cogen plants. Desalin Water Reuse 4(1):28–31

    Google Scholar 

  • Pettersen T, Argo A, Noble RD, Koval CA (1996) Design of combined membrane and distillation processes. Sep Technol 6(3):175–187

    Article  CAS  Google Scholar 

  • Qtaishat MR, Banat F (2013) Desalination by solar powered membrane distillation systems. Desalination 308:186–197

    Article  CAS  Google Scholar 

  • Rosberg R (1997) Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration—a new approach to reduce costs. Desalination 110(1):107–113

    Article  CAS  Google Scholar 

  • Saffarini RB, Summers EK, Arafat HA (2012) Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination 299:55–62

    Article  CAS  Google Scholar 

  • Sampathkumar K, Arjunan TV, Pitchandi P, Senthilkumar P (2010) Active solar distillation—a detailed review. Renew Sust Energ Rev 14(6):1503–1526

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310

    Article  CAS  PubMed  Google Scholar 

  • Strathmann H (1993) Electrodialytic membrane processes and their practical application, COMETT advanced course on membrane technology—electromembrane processes, Stuttgart

    Google Scholar 

  • Tiwari GN, Singh HN, Tripathi R. Present status of solar distillation. Sol Energy. 20030;75(5):367-373.

    Google Scholar 

  • Tsuru T (2001) Inorganic porous membranes for liquid phase separation. Sep Purif Rev 30(2):191–220

    Article  CAS  Google Scholar 

  • Vedavyasan CV (2007) Pretreatment trends—an overview. Desalination 203(1-3):296–299

    Article  CAS  Google Scholar 

  • Water Environment Federation (WEF) (2006) Membrane systems for wastewater treatment. Mc Graw Hill Press, New York

    Google Scholar 

  • Wolf PH, Siverns S, Monti S (2005) UF membranes for RO desalination pretreatment. Desalination 182(1-3):293–300

    Article  CAS  Google Scholar 

  • Yarlagadda S, Camacho LM, Gude VG, Wei Z, Deng S (2009) Membrane distillation for desalination and other separations. Recent Pat Chem Eng 2(2):128–158

    Article  CAS  Google Scholar 

  • Yarlagadda S, Gude VG, Camacho LM, Pinappu S, Deng S (2011) Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process. J Hazard Mater 192(3):1388–1394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the grant, SU 836130 from the United States Environmental Protection Agency and research grants from the New Mexico Water Resources Research Institute. The author appreciates the support received from the Office of Research and Economic Development (ORED), Bagley College of Engineering (BCoE), and the Department of Civil and Environmental Engineering at Mississippi State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera Gnaneswar Gude .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gude, V.G. (2017). Technical Approaches for Desalination and Water Supplies for Drought. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics