Skip to main content

Bioelectrical Impedance Analysis and Malnutrition in Cancer

  • Living reference work entry
  • First Online:

Abstract

Significant weight loss caused by malnutrition seems to be one of the leading symptoms associated with cancer development. Presence of malnutrition in oncologic patients is most frequently a result of insufficient nutrition and overactivation of inflammatory response. It leads to progressive wasting of the body as a consequence of the increased body catabolism and changes in body composition, and even may develop cancer cachexia – a systemic wasting that cannot be completely compensated by conventional nutrition support. In numerous cancer patients, presence of malnutrition is commonly a first indicator and symptom of the tumor development. The nutrition status of such patients is significantly associated with risk of the disease complication during therapy and may result in extension of patients’ hospitalization. Moreover, in some group of cancer individuals, the progressive malnutrition leading to cachexia is a main cause of death and not underlying disease. Based on above facts early malnutrition assessment is required for cancer nutritional support. There are various tools used in nutritional status evaluation in the form of scales, questionnaires or risk assessments, anthropometric examinations, and biochemical tests. Despite that they provide a valuable information about patient’s nutrition status, also require arrangement various method of their evaluation. Currently, the particular attention is drawn into imaging tools which could provide as a single method the assessment of a body composition. Among these tools the bioelectrical impedance analysis serves as an objective, reliable, and noninvasive method of malnutrition assessment. Bioelectrical impedance analysis measures body compositions electronically, and parameters obtained during examination refer to body vitality at a cellular level, e.g., fluid distribution in the body, fat mass or fat free mass. Also, other parameters derived from bioelectrical impedance analysis demonstrate high clinical utility in malnutrition assessment in cancer patients.

Appropriate evaluation of body composition in cancer patients may provide diagnostic or prognostic information, which seems more valuable than weight loss or body mass index change. In present study the literature review of bioelectrical impedance analysis usefulness in cancer malnutrition assessment is described.

This is a preview of subscription content, log in via an institution.

Abbreviations

BCM:

Body cell mass

BF:

Body fat

BIA:

Bioelectrical impedance analysis

BMI:

Body mass index

Cm:

Capacitance of membrane

CRC:

Colorectal cancer

ECM:

Extracellular mass

ECW:

Extracellular water

FFM:

Fat free mass

FM:

Fat mass

HCC:

Hepatocellular carcinoma

HNC:

Head and neck cancer

ICW:

Intracellular water

LBM:

Lean body mass

NSCLC:

Non–small cell lung cancer

PA:

Phase angle

R:

Resistance

SGA:

Subjective global assessment

TBW:

Total body water

Xc:

Reactance

Z:

Impedance

References

  • Argilés JM, López-Soriano FJ, Busquets S (2013) Mechanisms and treatment of cancer cachexia. Nutr Metab Cardiovasc Dis 23(Suppl 1):S19–S24

    Article  PubMed  Google Scholar 

  • Barbosa-Silva MC, Barros AJ (2005) Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 8:311–317

    Article  PubMed  Google Scholar 

  • Büntzel J, Krauß T, Büntzel H et al (2012) Nutritional parameters for patients with head and neck cancer. Anticancer Res 32(5):2119–2123

    PubMed  Google Scholar 

  • Burden ST, Hill J, Shaffer JL et al (2010) Nutritional status of preoperative colorectal cancer patients. J Hum Nutr Diet 23(4):402–407

    Article  CAS  PubMed  Google Scholar 

  • Castanho IA, Lopes AJ, Koury JC et al (2013) Relationship between the phase angle and volume of tumours in patients with lung cancer. Ann Nutr Metab 62(1):68–74

    Article  CAS  PubMed  Google Scholar 

  • Cederholm T, Bosaeus I, Barazzoni R et al (2015) Diagnostic criteria for malnutrition – an ESPEN Consensus Statement. Clin Nutr 34(3):335–340

    Article  CAS  PubMed  Google Scholar 

  • Cederholm T, Barazzoni R, Austin P et al (2016) ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. doi:10.1016/j.clnu.2016.09.004

  • Cole KS (1972) Membranes, ions and impulses: a chapter of classical biophysics. University of California Press, Berkeley, pp 20–43

    Google Scholar 

  • De Oliveira PG, Pereira dos Santos AS, De Mello ED (2012) Bioelectrical impedance phase angle: utility in clinical practice. Int J Neurol 5:123–127

    Google Scholar 

  • Dewys WD, Begg C, Lavin PT et al (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 69(4):491–497

    Article  CAS  PubMed  Google Scholar 

  • Fearon K, Strasser F, Anker SD et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495

    Article  Google Scholar 

  • Gonzalez MC, Nin LA, Reijven PLM et al (2013) Metoda bioelektrycznej impedancji. In: Sobotka L (ed) Podstawy żywienia klinicznego, 4th edn. Scientifica, Kraków, pp 15–22

    Google Scholar 

  • Grundmann O, Yoon SL, Williams JJ (2015) The value of bioelectrical impedance analysis and phase angle in the evaluation of malnutrition and quality of life in cancer patients-a comprehensive review. Eur J Clin Nutr 69(12):1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Lammersfeld CA, Burrows JL et al (2004) Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr 80(6):1634–1638

    CAS  PubMed  Google Scholar 

  • Gupta D, Lis CG, Granick J et al (2006) Malnutrition was associated with poor quality of life in colorectal cancer: a retrospective analysis. J Clin Epidemiol 59(7):704–709

    Article  PubMed  Google Scholar 

  • Gupta D, Lammersfeld CA, Vashi PG et al (2008a) Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer 8:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Lis CG, Dahlk SL et al (2008b) The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutr J 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Lammersfeld CA, Vashi PG et al (2009) Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV NSCLC. BMC Cancer 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  • http://polspen.pl/assets/files/zjazd_anestezjologiczny/Konrad%20Matysiak-Ocena%20Stanu%20Odzywienia.pdf.

  • Jager-Wittenaar H, Dijkstra PU, Earthman CP et al (2014) Validity of bioelectrical impedance analysis to assess fat-free mass in patients with head and neck cancer: an exploratory study. Head Neck 36(4):585–591

    Article  PubMed  Google Scholar 

  • Jagielska B (2011) Leczenie żywieniowe jako terapia wspomagająca w onkologii. In: Meder J (ed) Podstawy onkologii klinicznej, Warszawa

    Google Scholar 

  • Kushner R (1992) Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 11(2):199–209

    CAS  PubMed  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Composition of the ESPEN Working Group. Bioelectrical impedance analysis –part I: review of principles and methods. Clin Nutr 23(5):1226–1243

    Article  PubMed  Google Scholar 

  • Lee SY, Lee YJ, Yang JH et al (2014) The Association between phase angle of bioelectrical impedance analysis and survival time in advanced cancer patients: preliminary Study. Korean J Fam Med 35(5):251–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes JP, de Castro Cardoso Pereira PM, dos Reis Baltazar Vicente AF et al (2013) Nutritional status assessment in colorectal cancer patients. Nutr Hosp 28(2):412–418

    Google Scholar 

  • Małecka-Massalska T, Smoleń A, Morshed K (2014a) Tissue electrical properties in head and neck tumors before and after surgery: preliminary observations. Indian J Cancer 51:209–213

    Article  PubMed  Google Scholar 

  • Małecka-Massalska T, Smoleń A, Morshed K (2014b) Extracellular-to-body cell mass ratio and subjective global assessment in head-and-neck cancers. Curr Oncol 21(1):e62–e66

    Article  PubMed  PubMed Central  Google Scholar 

  • Małecka-Massalska T, Mlak R, Smoleń A et al (2016a) Bioelectrical impedance phase angle and subjective global assessment in detecting malnutrition among newly diagnosed head and neck cancer patients. Eur Arch Otorhinolaryngol 273(5):1299–1305

    Article  PubMed  Google Scholar 

  • Małecka-Massalska T, Mlak R, Smoleń A et al (2016b) Capacitance of membrane as a prognostic indicator of survival in head and neck cancer. PLoS One 11(11):e0165809

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulasi U, Kuchnia AJ, Cole AJ et al (2015) Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract 30(2):180–193

    Article  PubMed  Google Scholar 

  • Muramatsu M, Tsuchiya A, Ohta S et al (2015) Measuring body composition using the bioelectrical impedance method can predict the outcomes of gemcitabine-based chemotherapy in patients with pancreatobiliary tract cancer. Oncol Lett 10(6):3535–3541

    PubMed  PubMed Central  Google Scholar 

  • Norman K, Stobäus N, Zocher D et al (2010) Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am J Clin Nutr 92(3):612–619

    Article  CAS  PubMed  Google Scholar 

  • Piccoli A (2002) Patterns of bioelectrical impedance vector analysis: learning from electrocardiography and forgetting electric circuit models. Nutrition 18:520–521

    Article  PubMed  Google Scholar 

  • Piccoli A, Rossi B, Pillon L et al (1994) A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int 46:534–539

    Article  CAS  PubMed  Google Scholar 

  • Piccoli A, Pillon L, Favaro E (1997) Asymmetry of the total body water prediction bias using the impedance index. Nutrition 13:438–441

    Article  CAS  PubMed  Google Scholar 

  • Piccoli A, Pillon L, Dumler F (2002) Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition 18:153–167

    Article  PubMed  Google Scholar 

  • Richter E, Denecke A, Klapdor S et al (2012) Parenteral nutrition support for patients with pancreatic cancer-improvement of the nutritional status and the therapeutic outcome. Anticancer Res 32(5):2111–2118

    CAS  Google Scholar 

  • Sánchez-Lara K, Turcott JG, Juárez E et al (2012) Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: a prospective study. Nutr Cancer 64(4):526–534

    Article  PubMed  Google Scholar 

  • Schütte K, Tippelt B, Schulz C et al (2015) Malnutrition is a prognostic factor in patients with hepatocellular carcinoma (HCC). Clin Nutr 34(6):1122–1127

    Article  PubMed  Google Scholar 

  • Schwenk A, Ward LC, Elia M et al (1998) Bioelectrical impedance analysis predicts outcome in patients with suspected bacteremia. Infection 26:277–282

    Article  CAS  PubMed  Google Scholar 

  • Schwenk A, Beisenherz A, Römer K et al (2000) Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr 72:496–501

    CAS  Google Scholar 

  • Selberg O, Selberg D (2002) Norms and correlates of bioimpedance phase angle in healthy human subject, hospitalized patients, and patient with liver cirrhosis. Eur J Appl Physiol 86:509–516

    Article  CAS  PubMed  Google Scholar 

  • Slaviero KA, Read JA, Clarke SJ et al (2003) Baseline nutritional assessment in advanced cancer patients receiving palliative chemotherapy. Nutr Cancer 46(2):148–157

    Article  PubMed  Google Scholar 

  • Sobotka I (ed) (2012) Basics in clinical nutrition, 4th edn. Galen

    Google Scholar 

  • Souza TMR, Alves CI, Guillermo CVL (2015) Cutoff point of the phase angle in pre-radiotherapy cancer patients. Nutr Hosp 32(5):2253–2260

    Google Scholar 

  • Stegel P, Kozjek NR, Brumen BA et al (2016) Bioelectrical impedance phase angle as indicator and predictor of cachexia in head and neck cancer patients treated with (chemo)radiotherapy. Eur J Clin Nutr 70(5):602–606

    Article  CAS  PubMed  Google Scholar 

  • Toso S, Piccoli A, Gusella M et al (2000) Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition 16:120–124

    Article  CAS  PubMed  Google Scholar 

  • Toso S, Piccoli A, Gusella M et al (2003) Bioimpedance vector pattern in cancer patients without disease versus locally advanced or disseminated disease. Nutrition 19:510–514

    Article  PubMed  Google Scholar 

  • Trabelsi Alouane L, Bedioui A, Rahal K (2006) Bio-impedance analysis: screening of malnutrition in a group of Tunisian with cancer patients. Bull Cancer 93(10):1055–1061

    PubMed  Google Scholar 

  • Władysiuk MS, Mlak R, Morshed K et al (2016) Phase angle is considered to be a nutritional indicator in patients with head and neck cancer in detecting malnutrition. Curr Oncol 23(5):e481–e487

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Małecka-Massalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Małecka-Massalska, T., Powrózek, T., Mlak, R. (2017). Bioelectrical Impedance Analysis and Malnutrition in Cancer. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics