Skip to main content

Fasting Influences Conditioned Memory for Food Preference Through the Orexin System: Hypothesis Gained from Studies in the Rat

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

A large variety of behaviors that are essential for animal survival depend on the processing and perception of surrounding smells present in the natural environment. In particular, food-search behavior, which is conditioned by hunger, is directly driven by the perception of odors associated with food, and feeding status modulates olfactory sensitivity. The orexigenic hypothalamic peptide orexin A, one of the main central and peripheral hormones that triggers food intake, has been shown to increase olfactory sensitivity in various experimental conditions including the conditioned odor aversion learning paradigm. Conditioned odor aversion is an associative task that corresponds to the association between an olfactory conditioned stimulus and a delayed gastric malaise. Previous studies have shown that this association is formed only if the delay separating the conditioned stimulus presentation from the malaise is short, suggesting that the memory trace of the odor is relatively unstable. To test the selective impact of the orexin system in olfactory sensitivity, a recent study compared the effects of fasting and of central infusion of orexin A during the acquisition of conditioned odor aversion. Results showed that the increased olfactory sensitivity induced by fasting or by orexin infusion was accompanied by enhanced conditioned odor aversion learning performances. In reference to the duration of action of orexin, the present work details the results obtained during the successive conditioned odor aversion extinction tests and suggests a hypothesis concerning the role of the orexin component of fasting on the memory processes underlying the odor-malaise association during conditioned odor aversion. Moreover, referring to previous data in the literature, we suggest a functional circuit model where fasting modulates olfactory memory processes through direct and/or indirect activation of particular orexin brain targets including the olfactory bulb, the locus coeruleus, and the amygdala.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

aCSF:

Artificial cerebrospinal fluid

BLA:

Basolateral amygdala

COA:

Conditioned odor aversion

CS:

Conditioned stimulus

i.p.:

Intraperitoneal

Icv:

Intracerebroventricular

ISI:

Interstimulus interval

LC:

Locus coeruleus

LH:

Lateral hypothalamus

NA:

Norepinephrine

nM:

Nanomolar

OB:

Olfactory bulb

OX:

Orexin

SEM:

Standard error of the mean

US:

Unconditioned stimulus

μl:

Microliter

References

  • Aimé P, Duchamp-Viret P, Chaput MA, Savigner A, Mahfouz M, Julliard AK (2007) Fasting increases and satiation decreases olfactory detection for a neutral odor in rats. Behav Brain Res 179(2):258–264

    Article  PubMed  Google Scholar 

  • Andrews EA, Braveman NS (1975) The combined effects of dosage level and interstimulus interval on the formation of one-trial poison-based aversions in rats. Anim Learn Behav 3:287–289

    Article  Google Scholar 

  • Apelbaum AF, Chaput MA (2003) Rats habituated to chronic feeding restriction show a smaller increase in olfactory bulb reactivity compared to newly fasted rats. Chem Senses 28:389–395

    Article  CAS  PubMed  Google Scholar 

  • Apelbaum A, Perrut A, Chaput M (2005) Orexin A effects on the olfactory bulb spontaneous activity and odor responsiveness in freely breathing rats. Regul Peptides 129:49–61

    Article  CAS  Google Scholar 

  • Ardeshiri MR, Hosseinmardi N, Akbari E (2017) The effect of orexin 1 and orexin 2 receptors antagonisms in the basolateral amygdala on memory processing in a passive avoidance task. Physiol Behav 174:42–48. https://doi.org/10.1016/j.physbeh.2017.03.004 Epub 2017 Mar 6

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  CAS  PubMed  Google Scholar 

  • Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones BE, Mühlethaler M (2006) Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 142(4):999–1004

    Article  CAS  PubMed  Google Scholar 

  • Bouton ME, Jones DE, McPhillips SA, Swartzentruber D (1986) Potentiation and overshadowing in odor-aversion learning: role of method of odor presentation, the distal–proximal cue distinction, and the conditionability of odor. Learn Motiv 17:115–138

    Article  Google Scholar 

  • Bures J, Buresova O (1990) Reversible lesions allow reinterpretation of system level studies of brain mechanisms of behavior. Concep Neurosci 1:69–89

    Google Scholar 

  • Caillol M, Aïoun J, Baly C, Persuy MA, Salesse R (2003) Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res 960(1–2):48–61

    Article  CAS  PubMed  Google Scholar 

  • Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ (2017) Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 131(2):155–167. https://doi.org/10.1037/bne0000185

    Article  PubMed  CAS  Google Scholar 

  • Chapuis J, Garcia S, Messaoudi B, Thevenet M, Ferreira G, Gervais R, Ravel N (2009) The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats. J Neurosci 29(33):10287–10298

    Article  CAS  PubMed  Google Scholar 

  • Chapuis J, Cohen Y, He X, Zhang Z, Jin S, Xu F, Wilson DA (2013) Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination. J Neurosci 33(33):13449–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland TA, Linster C (2005) Computation in the olfactory system. Chem Senses 30:801–813

    Article  PubMed  Google Scholar 

  • De Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik V, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–327

    Article  PubMed  Google Scholar 

  • Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52

    PubMed  PubMed Central  CAS  Google Scholar 

  • Di Sebastiano AR, Wilson-Pérez HE, Lehman MN, Coolen LM (2010) Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Horm Behav 59(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Doucette W, Restrepo D (2008) Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol 6(10):e258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucette W, Milder J, Restrepo D (2007) Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. Learn Mem 14(8):539–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudai Y (1996) Consolidation: fragility on the road to the engram. Neuron 17(3):367–370

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y, Morris RGM (2000) To consolidate or not to consolidate: what are the questions? In: Bolhuis JJ (ed) Brain, perception, memory. Advances in cognitive sciences. Oxford University Press, Oxford

    Google Scholar 

  • Edwards CM, Abusnana S, Sunter D, Murphy KG, Ghatei MA, Bloom SR (1999) The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J Endocrinol 160:R7–R12

    Article  CAS  PubMed  Google Scholar 

  • Escanilla O, Alperin S, Youssef M, Ennis M, Linster C (2012) Noradrenergic but not cholinergic modulation of olfactory bulb during processing of near threshold concentration stimuli. Behav Neurosci 126(5):720–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180:509–532

    Article  CAS  PubMed  Google Scholar 

  • Ferry B (2014) The orexinergic system influences conditioned odor aversion learning in the rat: a theory on the processes and hypothesis on the circuit involved. Front Behav Neurosci 8:164. https://doi.org/10.3389/fnbeh.2014.00164 eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferry B, Di Scala G (1997) Bicuculline administration into basolateral amygdala facilitates trace conditioning of odor aversion in the rat. Neurobiol Learn Mem 67:80–83

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, Di Scala G (2000) Basolateral amygdala NMDA receptors are selectively involved in the acquisition of taste potentiated odor aversion in the rat. Behav Neurosci 114:1005–1010

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, Duchamp-Viret P (2014) The orexin component of fasting triggers memory processes underlying conditioned food selection in the rat. Learn Mem 21(4):185–189. https://doi.org/10.1101/lm.033688.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferry B, Sandner G, Di Scala G (1995) Neuroanatomical and functional specificity of the basolateral amygdaloid nucleus in taste-potentiated odor aversion. Neurobiol Learn Mem 64(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, Oberling P, Jarrard LE, Di Scala G (1996) Facilitation of conditioned odor aversion by entorhinal cortex lesions in the rat. Behav Neurosci 110:443–450

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, Ferreira G, Traissard N, Majchrzak M (2006) Selective involvement of the lateral entorhinal cortex in the control of the olfactory memory trace during conditioned odor aversion in the rat. Behav Neurosci 120(5):1180–1186

    Article  PubMed  Google Scholar 

  • Fletcher ML, Chen WR (2010) Neural correlates of olfactory learning: critical role of centrifugal neuromodulation. Learn Mem 17(11):561–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia J, Ervin FR, Koelling RA (1966) Learning with prolonged delay of reinforcement. Psychon Sci 5:121–122

    Article  Google Scholar 

  • Gervais R, Pager J (1982) Functional changes in waking and sleeping rats after lesions in the olfactory pathways. Physiol Behav 29(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD (1999) Orexin a activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96(19):10911–10916

    Article  CAS  PubMed  Google Scholar 

  • Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res 64:14–103

    Article  Google Scholar 

  • Hankins WG, Garcia J, Rusiniak KW (1973) Dissociation of odor and taste in baitshyness. Behav Biol 8:407–419

    Article  CAS  PubMed  Google Scholar 

  • Hardy AB, Aioun J, Baly C, Julliard KA, Caillol M, Salesse R, Duchamp-Viret P (2005) Orexin A modulates mitral cell activity in the rat olfactory bulb: patch-clamp study on slices and immunocytochemical localization of orexin receptors. Endocrinol 146(9):4042–4053

    Article  CAS  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559

    Article  CAS  Google Scholar 

  • Holland P (1990) Event representation in pavlovian conditioning: image and action. Cognition 37:105–131

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van Den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415(2):145–159

    Article  CAS  PubMed  Google Scholar 

  • Inui T, Shimura T, Yamamoto T (2006) Effects of brain lesions on taste-potentiated odor aversion in rats. Behav Neurosci 120:590–599

    Article  PubMed  Google Scholar 

  • Jaeger LB, Farr SA, Banks WA, Morley JE (2002) Effects of orexin-A on memory processing. Peptides 23(9):1683–1688

    Article  CAS  Google Scholar 

  • Julliard AK, Chaput MA, Apelbaum A, Aimé P, Mahfouz M, Duchamp-Viret P (2007) Changes in rat olfactory detection performance induced by orexin and leptin mimicking fasting and satiation. Behav Brain Res 183(2):123–129

    Article  CAS  PubMed  Google Scholar 

  • King BM. Amygdaloid lesion-induced obesity: relation to sexual behavior, olfaction, and the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 291(5):R1201–R1214

    Google Scholar 

  • Kunii K, Yamanaka A, Nambu T, Matsuzaki I, Goto K, Sakurai T (1999) Orexins/hypocretins regulate drinking behaviour. Brain Res 842:256–261

    Article  CAS  PubMed  Google Scholar 

  • Le Magnen J (1959) The role of olfacto-gustatory stimuli in the regulation of the alimentary behavior of the mammal. J Psychol Norm Pathol (Paris) 56:137–160

    Google Scholar 

  • Linster C, Cleland TA (2002) Cholinergic modulation of sensory representations in the olfactory bulb. Neural Netw 15:709–717

    Article  PubMed  Google Scholar 

  • Lorden JF, Kenfield M, Braun JJ (1970) Response suppression to odors paired with toxicosis. Learn Motiv 1:391–400

    Article  Google Scholar 

  • Lu XY, Bagnol D, Burke S, Akil H, Watson SJ (2000) Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav 37(4):335–344

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ (1991) Simple conditioning. In: Lister RG, Weingartner HJ (eds) Perspectives on cognitive neuroscience. Oxford University Press, pp 65–75

    Google Scholar 

  • Mair RG, Hembrook JR (2008) Memory enhancement with event-related stimulation of the rostral intralaminar thalamic nuclei. J Neurosci 28(52):14293–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandairon N, Linster C (2009) Odor perception and olfactory bulb plasticity in adult mammals. J Neurophysiol 101(5):2204–2209

    Article  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    Article  CAS  PubMed  Google Scholar 

  • McLean JH, Shipley MT, Nickell WT, Aston-Jones G, Reyher CK (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J Comp Neurol 285(3):339–349

    Article  CAS  PubMed  Google Scholar 

  • Miranda MI (2012) Taste and odor recognition memory: the emotional flavor of life. Rev Neurosci 23(5–6):481–499

    PubMed  Google Scholar 

  • Miranda MA, Ferry B, Ferreira G (2007) Basolateral amygdala noradrenergic activity is involved in the acquisition of conditioned odor aversion in the rat. Neurobiol Learn Mem 88:260–263

    Article  CAS  PubMed  Google Scholar 

  • Mullett MA, Billington CJ, Levine AS, Kotz CM (2000) Hypocretin I in the lateral hypothalamus activates key feeding-regulatory brain sites. Neuroreport 11(1):103–108

    Article  CAS  PubMed  Google Scholar 

  • Mulligan C, Moreau K, Brandolini M, Livingstone B, Beaufrère B, Boirie Y (2002) Alterations of sensory perceptions in healthy elderly subjects during fasting and refeeding. A pilot study. Gerontology 48(1):39–43

    Article  PubMed  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827(1–2):243–260

    Article  CAS  PubMed  Google Scholar 

  • Nigrosh BJ, Slotnick BM, Nervin JA (1975) Olfactory discrimination, reversal learning, and stimulus control in rats. J Comp Physiol Psychol 89:285–294

    Article  CAS  PubMed  Google Scholar 

  • O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11(4):893–897

    Article  CAS  PubMed  Google Scholar 

  • Pager J (1974) A selective modulation of the olfactory bulb electrical activity in relation to the learning of palatability in hungry and satiated rats. Physiol Behav 12(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Pager J (1978) Ascending olfactory information and centrifugal influx contributing to a nutritional modulation of the rat mitral cell responses. Brain Res 140:251–269

    Article  CAS  PubMed  Google Scholar 

  • Pager J, Giachetti I, Holley A, Le Magnen J (1972) A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiol Behav 9(4):573–579

    Article  CAS  PubMed  Google Scholar 

  • Petrovich GD (2013) Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 121:10–18. https://doi.org/10.1016/j.physbeh.2013.03.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peyron C, Tighe D, Vanden Pol AN, De Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    Article  CAS  PubMed  Google Scholar 

  • Prud'Homme MJ, Lacroix MC, Badonnel K, Gougis S, Baly C, Salesse R, Caillol M (2009) Nutritional status modulates behavioural and olfactory bulb Fos responses to isoamyl acetate or food odour in rats: roles of orexins and leptin. Neuroscience 162(4):1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA (1988) Behavioral studies of Pavlovian conditioning. Annu Rev Neurosci 11:329–352

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Ishii Y, Halford JC, Blundell JE (2002) Orexins and appetite regulation. Neuropeptides 36(5):303–325

    Article  CAS  PubMed  Google Scholar 

  • Roldan G, Bures J (1994) Tetrodotoxin blockade of amygdala overlapping with poisoning impairs acquisition of conditioned taste aversion in rats. Behav Brain Res 65:213–219

    Article  CAS  PubMed  Google Scholar 

  • Royet JP, Gervais R, Araneda S (1983) Effect of local 6-OHDA and 5,6-DHT injections into the rat olfactory bulb on neophobia and learned aversion to a novel food. Behav Brain Res 10:297–309

    Article  CAS  PubMed  Google Scholar 

  • Rusiniak KW, Palmerino CC, Rice AG, Forthman DL, Garcia J (1982) Flavor-illness aversions: potentiation of odor by taste with toxin but not shock in rats. J Comp Physiol Psychol 96:527–539

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70(4):582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T (2005) Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 9:231–241

    Article  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585

    Article  CAS  Google Scholar 

  • Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197(2):291–317

    Article  CAS  PubMed  Google Scholar 

  • Schmitt O, Usunoff KG, Lazarov NE, Itzev DE, Eipert P, Rolfs A, Wree A (2012) Orexinergic innervation of the extended amygdala and basal ganglia in the rat. Brain Struct Funct 217(2):233–256

    Article  CAS  PubMed  Google Scholar 

  • Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE (2013) Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. PNAS 110(50):20260–20265. https://doi.org/10.1073/pnas.1320325110

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Mondal MS, Date Y, Nakazato M, Suzuki H, Ueta Y (2008) Distribution of orexins-containing fibers and contents of orexins in the rat olfactory bulb. Neurosci Res 61(1):99–105

    Article  CAS  PubMed  Google Scholar 

  • Slotnick BM (1984) Olfactory stimulus control in the rat. Chem Senses 9:157–165

    Article  Google Scholar 

  • Slotnick BM, Katz HM (1974) Olfactory learning set formation in rats. Science 185:796–798

    Article  CAS  PubMed  Google Scholar 

  • Slotnick BM, Westbrook F, Darling FMC (1997) What the rat's nose tells the rat's mouth: long delay aversion conditioning with aqueous odors and potentiation of taste by odors. Anim Learn Behav 25:357–369

    Article  Google Scholar 

  • Sullivan RM, Stackenwalt G, Nasr F, Lemon C, Wilson DA (2000) Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci 114:957–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson LW, Sanchez-Watt G, Watt AG (2005) Comparison of melanin-concentrating hormone and hypocretin/orexin mRNA expression patterns in a new parceling scheme of the lateral hypothalamic zone. Neurosci Lett 387:80–84

    Article  CAS  PubMed  Google Scholar 

  • Taukulis HK (1974) Odor aversions produced over long CS-US delays. Behav Biol 10:505–510

    Article  CAS  PubMed  Google Scholar 

  • Telegdy G, Adamik A (2002) The action of orexin a on passive avoidance learning. Regul Pept 104(1–3):105–110

    Article  CAS  PubMed  Google Scholar 

  • Touzani K, Sclafani A (2002) Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. Eur J Neurosci 16(12):2425–2433

    Article  PubMed  Google Scholar 

  • Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438(1–2):71–75

    Article  CAS  PubMed  Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458

    Article  CAS  PubMed  Google Scholar 

  • Wilson DA, Sullivan RM (2011) Cortical processing of odor objects. Neuron 72(4):506–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Q, Harley CW, McLean JH (2003) Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 10:5–15

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ferry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ferry, B., Duchamp-Viret, P. (2018). Fasting Influences Conditioned Memory for Food Preference Through the Orexin System: Hypothesis Gained from Studies in the Rat. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics