Skip to main content

Insect Management for Disease Control in Florists’ Crops

  • Reference work entry
  • First Online:
Handbook of Florists' Crops Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

Abstract

Insect pests are common problems in greenhouse and field production systems associated with floriculture crops. Many insect pests cause direct feeding damage to crops; however, several cause indirect damage by vectoring pathogens such as fungi and viruses. The primary insect pests of floricultural crops that vector or transmit diseases are the western flower thrips (Frankliniella occidentalis), fungus gnats (Bradysia spp.), shore flies (Scatella spp.), green peach aphid (Myzus persicae), and sweetpotato whitefly (Bemisia tabaci). Because the tolerance level for insect pests that vector diseases is low, especially in regards to the western flower thrips due to the direct transmission of Impatiens Necrotic Spot virus, intensive pest management strategies need to be implemented. The pest management strategies used are generally associated with insecticide applications although extensive use of insecticides may lead to insecticide resistance. Therefore, in addition to the use of insecticides, and in order to effectively deal with insect vector populations, consideration should be given to cultural and sanitation practices and using biological control agents (natural enemies). However, these strategies must be effective in sustaining populations at very low levels in order to reduce the potential of disease transmission to floricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burlington

    Google Scholar 

  • Allen WR, Broadbent A (1986) Transmission of tomato spotted wilt virus in Ontario greenhouses by Frankliniella occidentalis. Can J Plant Pathol 8:33–38

    Article  Google Scholar 

  • Bell ML, Baker JR (2000) Comparison of greenhouse screening materials for excluding whitefly (Homoptera: Aleyrodidae) and thrips (Thysanoptera: Thripidae). J Econ Entomol 93:800–804

    Article  CAS  PubMed  Google Scholar 

  • Bentz J, Reeves J, Barbosa P, Francis B (1995) Nitrogen fertilizer effect on selection, acceptance, and suitability of Euphorbia pulcherrima (Euphorbiaceae) as a host plant to Bemisia tabaci (Homoptera: Aleyrodidae). Popul Ecol 24:40–45

    Google Scholar 

  • Bethke JA, Paine TD (1991) Screen hole size and barriers for exclusion of insect pests of glasshouse crops. J Entomol Sci 26:169–177

    Article  Google Scholar 

  • Bielza P (2008) Insecticide resistance management strategies against western flower thrips, Frankliniella occidentalis. Pest Manag Sci 64:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Blumthal MR, Cloyd RA, Spomer LA, Warnock DF (2005) Flower color preferences of western flower thrips. HortTechnology 15:846–853

    Google Scholar 

  • Braun SE, Castrillo LA, Sanderson JP, Daughtrey ML, Wraight SP (2010) Transstadial transmission of Pythium in Bradysia impatiens and lack of adult vectoring capacity. Phytopathology 100:1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–100

    Article  Google Scholar 

  • Buitenhuis R, Shipp JL (2006) Factors influencing the use of trap plants for the control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse potted chrysanthemum. Environ Entomol 35:1411–1416

    Article  Google Scholar 

  • CABI (2015) Myzus persicae (green peach aphid). http://www.cabi.org/isc/datasheet/35642. Accessed 10 June 2016

  • CABI (2016) Bemisia tabaci (tobacco whitefly). http://www.cabi.org/isc/datasheet/8927. Accessed 10 June 2016

  • Chambers RJ, Wright EM, Lind RJ (1993) Biological control of glasshouse sciarid flies (Bradysia spp.) with the predatory mite, Hypoaspis miles, on cyclamen and poinsettia. Biocontrol Sci Technol 3:285–293

    Article  Google Scholar 

  • Cloyd RA (2000) Fungus gnat and shore fly management strategies: panel discussion. In: King AI, Greene ID (eds) Proceedings of 16th conference on insect and disease management on ornamentals. Society of American Florists, Alexandria, pp 57–59

    Google Scholar 

  • Cloyd RA (2009) Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: have we reached an impasse? Pest Technol 3:1–9

    Google Scholar 

  • Cloyd RA (2010) Pesticide mixtures and rotations: are these viable resistance mitigating strategies? Pest Technol 4:14–18

    Google Scholar 

  • Cloyd RA (2011) Managing insect and mite pest. In: Nau J (ed) Ball redbook, vol 2, 18th edn. Ball Publishing, Batavia, pp 107–119

    Google Scholar 

  • Cloyd RA (2012) Insect and mite management in greenhouses. In: Nelson PV (ed) Greenhouse operation and management, 7th edn. Pearson Prentice Hall, New Jersey, pp 291–441

    Google Scholar 

  • Cloyd RA, Chiasson H (2007) Activity of an essential oil derived from Chenopodium ambrosioides on greenhouse insect pests. J Econ Entomol 100:459–466

    Article  PubMed  Google Scholar 

  • Cloyd RA, Dickinson A (2006) Effect of Bacillus thuringiensis subsp. israelensis and neonicotinoid insecticides on the fungus gnat Bradysia sp. nr. coprophila (Lintner) (Diptera: Sciaridae). Pest Manag Sci 62:171–177

    Article  CAS  PubMed  Google Scholar 

  • Cloyd RA, Zaborski ER (2004) Fungus gnats, Bradysia spp. (Diptera: Sciaridae), and other arthropods in commercial bagged soilless growing media and rooted plant plugs. J Econ Entomol 97:503–510

    Article  PubMed  Google Scholar 

  • Daughtrey ML, Jones RK, Moyer JW, Daub ME, Baker JR (1997) Tospoviruses strike the greenhouse industry. Plant Dis 81:1220–1230

    Article  Google Scholar 

  • DeAngelis JD, Sether DM, Rossignol PA (1993) Survival, development, and reproduction in western flower thrips (Thysanoptera: Thripidae) exposed to Impatiens necrotic spot virus. Environ Entomol 22:1308–1312

    Article  Google Scholar 

  • de Jager CM, Butot RPT, de Jong TJ, Klinkhamer PGL, van der Meijeden E (1993) Population growth and survival of western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) on different chrysanthemum cultivars. J Appl Entomol 115:519–525

    Article  Google Scholar 

  • Dennis DJ (1978) Observations of fungus gnat damage to glasshouse cucurbits. N Z J Exp Agr 6:83–84

    Google Scholar 

  • Dreistadt SH (2001) Integrated pest management for floriculture and nurseries, vol 3402, Division of agriculture and natural resources. Statewide Integrated Pest Management Project, University of California, Oakland

    Google Scholar 

  • Eastin WC, Foote BA (1971) Biology and immature stages of Dichaeta caudata (Diptera: Ephydridae). Ann Entomol Soc Am 64:271–279

    Article  Google Scholar 

  • Echegaray E (2012) Life history parameters of the rove beetle Atheta coriaria (Kraatz) and suitability as a biological agent against the fungus gnat Bradysia sp. nr. coprophila (Lintner). PhD Dissertation, Kansas State University, Manhattan

    Google Scholar 

  • El-Hamalawi ZA (2008) Acquistion, retention and dispersal of soilborne plant pathogenic fungi by fungus gnats and moth flies. Ann Appl Biol 153:195–203

    Google Scholar 

  • El-Hamalawi ZA, Stanghellini ME (2005) Disease development on Lisianthus following aerial transmission of Fusarium avenaceum by adult shore flies, fungus gnats, and moth flies. Plant Dis 89:619–623

    Article  Google Scholar 

  • Ellisor LO (1934) Notes on the biology and control of Neosciaria ocellaris (Comstock) (Diptera, Sciaridae). Iowa State J Sci 9:25–36

    Google Scholar 

  • Elmer WH (2008) Preventing the spread of Fusarium wilt of Hiemalis begonias in the greenhouse. Crop Prot 27:1078–1083

    Article  CAS  Google Scholar 

  • Espinosa PJ, Bielza P, Contreras J, Lacasa A (2002) Insecticide resistance in field populations of Frankliniella occidentalis (Pergande) in Murcia (south-east Spain). Pest Manag Sci 58:967–971

    Article  CAS  PubMed  Google Scholar 

  • Fawzi TH, Kelly WC (1982) Cavity spot of carrots caused by feeding of fungus gnat larvae. J Am Soc Hort Sci 107:1177–1181

    Google Scholar 

  • Gao Y, Zei Z, Reitz SR (2012) Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag Sci 68:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Gardiner RB, Jarvis WR, Shipp JL (1990) Ingestion of Pythium spp. by larvae of fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann Appl Biol 116:205–212

    Article  Google Scholar 

  • Gaum WG, Giliomee JH, Pringle KL (1994) Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on English cucumbers. Bull Entomol Res 84:219–224

    Article  Google Scholar 

  • Gerin C, Hance TH, Van Impe G (1999) Impact of flowers on the demography of western flower thrips Frankliniella occidentalis (Thysan., Thripidae). J Appl Entomol 123:569–574

    Article  Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol 2:67–93

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DR, Menzies JG (1993) Fungus gnats vector Fusarium oxysporum f. sp. radicis-lycopersici. Ann Appl Biol 123:539–544

    Article  Google Scholar 

  • Goldberg NP, Stanghellini ME (1990) Ingestion-egestion and aerial transmission of Pythium aphanidermatum by shore flies (Ephydrinae: Scatella stagnalis). Phytopathology 80:1244–1246

    Article  Google Scholar 

  • Goldberg NP, Stanghellini ME, Rasmussen SL (1992) Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers. Plant Dis 76:777–779

    Article  Google Scholar 

  • Gouge DH, Hague NGM (1995) Glasshouse control of fungus gnats, Bradysia paupera, on fuchsias by Steinernema feltiae. Fund Appl Nematol 18:77–80

    Google Scholar 

  • Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbial Mol Biol Rev 63:128–148

    CAS  Google Scholar 

  • Hamlen RA, Mead FW (1979) Fungus gnat larval control in greenhouse plant production. J Econ Entomol 72:269–271

    Article  Google Scholar 

  • Harris MA (1995) Dissemination of the phytopathogen Thielaviopsis basicola by the fungus gnat Bradysia coprophila and biological control of these pests by Fusarium proliferatum and steinernematid nematodes. Ph D Dissertation, University of Georgia, Athens

    Google Scholar 

  • Harris MA, Oetting RD, Gardner WA (1995) Use of entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biol Control 5:412–418

    Article  Google Scholar 

  • Herron GA, James TM (2005) Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistance. Aust J Entomol 44:299–303

    Article  Google Scholar 

  • Hooper AM, Bennison JA, Lusnials MC, Pickett JA, Pow EM, Wadhams LJ (1999) Verbena x hybrid flower volatiles attractive to western flower thrips, Frankliniella occidentalis. Pest Sci 55:60–662

    Google Scholar 

  • Hyder N, Coffey MD, Stanghellini ME (2009) Viability of oomycete propagules following ingestion and excretion by fungus gnats, shore flies, and snails. Plant Dis 93:720–726

    Article  Google Scholar 

  • Immaraju JA, Paine TD, Bethke JA, Robb KL, Newman JP (1992) Western flower thrips (Thysanoptera: Thripidae) resistance to insecticides in coastal California greenhouses. J Econ Entomol 85:9–14

    Article  CAS  Google Scholar 

  • Jacobson RJ, Croft P, Fenlon J (1999) Scatella stagnalis Fallen (Diptera: Ephydridae): towards IPM in protected lettuce crops. Inter Org Bio Control Bull 22:117–120

    Google Scholar 

  • James RL, Dumroese RK, Wenny DL (1995) Botrytis cinerea carried by adult fungus gnats (Diptera: Sciaridae) in container nurseries. Tree Planters Notes 46:48–53

    Google Scholar 

  • Jarvis WR, Shipp JL, Gardiner RB (1993) Transmission of Pythium aphanidermatum to greenhouse cucumber by the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann Appl Biol 122:23–29

    Article  Google Scholar 

  • Jensen SE (2000) Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integ Pest Manag Rev 5:131–146

    Article  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Article  Google Scholar 

  • Kalb DW, Millar RL (1986) Dispersal of Verticillium albo atrum by the fungus gnat (Bradysia impatiens). Plant Dis 70:752–753

    Article  Google Scholar 

  • Kawai A, Kitamura C (1987) Studies on the population ecology of Thrips palmi Karny. XV. Evaluation of effectiveness of control methods using a simulation model. Appl Entomol Zool 22:292–302

    Article  Google Scholar 

  • Keates SE, Sturrock RN, Sutherland JR (1989) Populations of adult fungus gnats and shore flies in British Columbia container nurseries as related to nursery environment, and incidence of fungi on the insects. New For 3:1–9

    Article  Google Scholar 

  • Kennedy MK (1971) The significance of fungi in the ecology of Bradysia impatiens. MS Thesis, Cornell University, Ithaca

    Google Scholar 

  • Kirk WDJ (2002) The pest from the west: Frankliniella occidentalis. Thrips and Tospoviruses: Proceedings of 7th International Symposium. Thysanoptera 2:33–42

    Google Scholar 

  • Leath KT, Newton RC (1969) Interaction of a fungus gnat, Bradysia sp. with Fusarium spp. on alfalfa and red cover. Phytopathology 59:257–258

    Google Scholar 

  • Lindord MB (1932) Transmission of the pineapple yellow-spot virus by Thrips tabaci. Phytopathology 22:301–324

    Google Scholar 

  • Lindquist R, Buxton J, Piatkowski J (1994) Biological control of sciarid flies and shore flies in glasshouses. In: Brighton crop protection conference – pests and diseases. British Crop Protection Council, Farnham, pp 1067–1072

    Google Scholar 

  • Loughner RL, Warnock DF, Cloyd RA (2005) Resistance of greenhouse, laboratory, and native populations of western flower thrips to spinosad. HortScience 40:146–149

    Google Scholar 

  • Lublinkhof J, Foster DE (1977) Development and reproductive capacity of Frankliniella occidentalis (Thysanoptera: Thripidae) reared at three temperatures. J Kansas Entomol Soc 50:313–316

    Google Scholar 

  • Ludwig SW, Oetting RD (2001) Evaluation of medium treatments from management of Frankliniella occidentalis (Thripidae: Thysanoptera) and Bradysia coprophila (Diptera: Sciaridae). Pest Manag Sci 57:1114–1118

    Article  CAS  PubMed  Google Scholar 

  • MacGillivray ME, Anderson GB (1958) Development of four species of aphids (Homoptera) on potato. Can Entomol 90(3):148–155

    Article  Google Scholar 

  • Mainali BP, Lim UT (2008) Evaluation of chrysanthemum flower model trap to attract two Frankliniella thrips (Thysanoptera: Thripidae). J Asia-Pacific Entomol 11:171–174

    Article  Google Scholar 

  • Martin JH, Mifsud D, Rapisarda C (2000) The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean basin. Bull Entomol Res 90:407–448

    CAS  PubMed  Google Scholar 

  • Mateus C, Mexia A (1995) Western flower thrips response to color. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 567–570

    Chapter  Google Scholar 

  • McHugh J (1991) Attack! Fungus gnats and shore flies. Greenh Grow 77:31–40

    Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Moritz G, Kumm S, Mound L (2004) Tospovirus transmission depends on thrips ontogeny. Virus Res 100:143–149

    Article  CAS  PubMed  Google Scholar 

  • Morton A, Garcia Del Pino F (2007) Susceptibility of shore fly Scatella stagnalis to five entomopathogenic nematode strains in bioassays. BioControl 52:533–545

    Article  Google Scholar 

  • Mound LA (1996) The Thysanoptera vector species of tospoviruses. Acta Hort 431:298–309

    Article  Google Scholar 

  • Nagata T, Inoue-Nagata AK, van Lent J, Goldbach R, Peters D (2002) Factors determining the vector competence and specificity for transmission of Tomato spotted wilt virus. J Gen Virol 83:663–671

    Article  PubMed  Google Scholar 

  • Novak H, Komor E (2010) How aphids decide what is good for them: experiments to test aphid feeding behavior on Tanacetum vulgare (L.) using different nitrogen regimes. Oecologia 163:973–984

    Article  Google Scholar 

  • Olson DL, Oetting RD (1999) Compatibility of insect growth regulators and Beauveria bassiana (Balsamo) Vuillemin in controlling green peach aphid (Homoptera: Aphididae) on greenhouse chrysanthemum. J Entomol Sci 34:286–294

    Article  CAS  Google Scholar 

  • Pappu H, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236

    Article  CAS  PubMed  Google Scholar 

  • Parrella MP (1999) Chapter 9: arthropod fauna. In: Ecosystems of the world 20, greenhouse ecosystems. Elsevier, New York

    Google Scholar 

  • Parrella MP, Jones V (1987) Development of integrated pest management strategies in floricultural crops. Bull Entomol Soc Am 33:28–34

    Google Scholar 

  • Perring TM, Gruenhagen NM, Farrar CA (1999) Management of plant viral diseases through chemical control of insect vectors. Annu Rev Entomol 44:457–481

    Article  CAS  PubMed  Google Scholar 

  • Petitt FL, Loader CA, Schon MK (1994) Reduction of nitrogen concentration in the hydroponic solution on population growth rate of the aphids (Homoptera: Aphididae) Aphis gossypii on cucumber and Myzus persicae on pepper. Environ Entomol 23:930–936

    Article  Google Scholar 

  • Pirone TP, Harris KF (1977) Nonpersistent transmission of plant viruses by aphids. Annu Rev Phytopathol 15:55–73

    Article  Google Scholar 

  • Polston JE, Anderson PK (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the Western hemisphere. Plant Dis 81:1358–1369

    Article  Google Scholar 

  • Prabhaker N, Coudriet DL, Meyerdirk DE (1985) Insecticide resistance in the sweet potato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 78:748–752

    Article  CAS  Google Scholar 

  • Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Fla Entomol 92:7–13

    Article  Google Scholar 

  • Robb KL, Parrella MP (1995) IPM of western flower thrips. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 365–370

    Chapter  Google Scholar 

  • Sakimura K (1962) The present status of thrips-borne viruses. In: Maramorosch K (ed) Biological transmission of disease agents. Academic, New York, pp 33–40

    Chapter  Google Scholar 

  • Sakurai T, Inoue T, Tsuda S (2004) Distinct efficiencies of Impatiens necrotic spot virus transmission by five thrips vector species (Thysanoptera: Thripidae) of tospoviruses in Japan. Appl Entomol Zool 39:71–78

    Article  Google Scholar 

  • Stanghellini ME, Rasmussen SL, Kim DH (1999) Aerial transmission of Thielaviopsis basicola, a pathogen of corn-salad, by adult shore flies. Phytopathology 89:476–479

    Article  CAS  PubMed  Google Scholar 

  • Teulon DAJ, Penman DR, Ramakers PMJ (1993) Volatile chemicals for thrips (Thysanoptera: Thripidae) host-finding and application for thrips pest management. J Econ Entomol 86:1405–1415

    Article  CAS  Google Scholar 

  • Tommasini MG, Maini S (1995) Frankliniella occidentalis and thrips harmful to vegetable and ornamental crops in Europe. In: Loomans AJM, van Lenteren JC, Tommasini S, Maini S, Riudavets J (eds) Biological control of thrips pests. Wageningen Agricultural University Papers, Wageningen, pp 1–42

    Google Scholar 

  • Ullman DE, Cho JJ, Mau RFL, Westcot DM, Custer DM (1992) A midgut barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology 82:1333–1342

    Article  Google Scholar 

  • van de Wetering F, Goldbach R, Peters D (1996) Transmission of tomato spotted wilt virus by Frankliniella occidentalis after viral acquisition during the first larval stage. Acta Hort 431:350–358

    Article  Google Scholar 

  • Van Epenhuijsen CW, Page BBC, Koolaard JP (2001) Preventative treatments for control of fungus gnats and shore flies. N Z Plant Protect 54:42–46

    Google Scholar 

  • Vänninen I (2001) Biology of the shore fly Scatella stagnalis in rockwool under greenhouse conditions. Entomol Exp Appl 98:317–328

    Article  Google Scholar 

  • Vänninen I, Koskula H (1996) Biology and management of shore flies (Scatella stagnalis) in a cucumber seedling crop grown in rockwool. IOBC/WPRS Bull 19:187–190

    Google Scholar 

  • Vänninen I, Koskula H (1998) Effect of hydrogen peroxide on algal growth, cucumber seedlings and the reproduction of shore flies (Scatella stagnalis) in rockwool. Crop Prot 17:547–553

    Article  Google Scholar 

  • Vänninen I, Koskula H (2003) Biological control of the shore fly (Scatella tenuicosta) with steinernematid nematodes and Bacillus thuringiensis var. thuringiensis in peat and rockwool. Biocontrol Sci Technol 13:47–63

    Article  Google Scholar 

  • Vehrs SLC, Walker GP, Parrella MP (1992) Comparison of population growth rate and within-plant distribution between Aphis gossypii and Myzus persicae (Homoptera: Aphididae) reared on potted chrysanthemum. J Econ Entomol 85:799–807

    Article  Google Scholar 

  • Whitfield AE, Ullman DE, German TL (2005) Tospovirus-thrips interactions. Annu Rev Phytopathol 43:459–489

    Article  CAS  PubMed  Google Scholar 

  • Wijkamp I, van Lent J, Kormelink R, Goldbach R, Peters D (1993) Multiplication of tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J Gen Virol 74:341–349

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JD, Daugherty DM (1970) The biology and immature stages of Bradysia impatiens (Diptera: Sciaridae). Ann Entomol Soc Am 63:656–660

    Article  Google Scholar 

  • Wisler GC, Duffus JE, Liu H-Y, Li RH (1998) Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis 82:270–280

    Article  Google Scholar 

  • Zack RS, Foote BA (1978) Utilization of algal monocultures by larvae of Scatella stagnalis. Environ Entomol 7:509–511

    Article  Google Scholar 

  • Zhao G, Liu W, Brown JM, Knowles CO (1995) Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 88:1164–1170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Cloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cloyd, R.A. (2018). Insect Management for Disease Control in Florists’ Crops. In: McGovern, R., Elmer, W. (eds) Handbook of Florists' Crops Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39670-5_3

Download citation

Publish with us

Policies and ethics