Skip to main content

Achondrites

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Definition

Achondrites are meteorites that formed by varying degrees of melting and differentiation on their parent bodies. They are divided into asteroidal and planetary achondrites. Asteroidal achondrites are remnants of differentiated planetesimals and protoplanets that existed shortly after the formation of the Solar System. They are partially to totally melted rocks. Planetary achondrites represent material derived from large planetary bodies (the Moon and Mars) and formed by complex igneous processing.

Introduction

This section covers achondrites and achondritic clasts in stony-iron meteorites (Table 1). Achondrites comprise ~6% of the global collection. Achondrites were derived either from asteroids (asteroidal achondrites) or larger planetary bodies (planetary achondrites). Asteroidal achondrites are broadly classified into primitive and differentiated types. Primitive achondrites experienced partial melting and preserve isotopic and some chemical signatures of their precursor...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD, Asmerom Y, Nunn MH, Shaheen R, Thiemens MH, Steele A, Foel ML, Bowden R, Glamoclija M, Zang Z, Elardo SM (2013) Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339:780–785

    Article  Google Scholar 

  • Barrat JA, Yamaguchi A, Zanda B, Bollinger C, Bohn M (2008) Relative chronology of crust formation on asteroid Vesta: insights from the geochemistry of diogenites. Geochim Cosmochim Acta 74:6218–6231

    Article  Google Scholar 

  • Barrat JA, Greenwood RC, Verchovsky AB, Gillet P, Bollinger C, Langlade JA, Liorzou C, Franchi IA (2015) Crustal differentiation in the early solar system: clues from the unique achondrite Northwest Africa 7325 (NWA 7325). Geochim Cosmochim Acta 168:280–292

    Article  Google Scholar 

  • Benedix GK, McCoy TJ, Keil K, Bogard DD, Garrison DH (1998) A petrologic and isotopic study of winonaites: evidence for early partial melting, brecciation, and metamorphism. Geochim Cosmochim Acta 62:2535–2553

    Article  Google Scholar 

  • Benedix GK, Haack H, McCoy TJ (2014) Iron and stony-iron meteorites. In: Davis AM (ed) Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 267–285

    Chapter  Google Scholar 

  • Bogard DD (2011) K-Ar ages of meteorites: clues to parent-body thermal histories. Chem Erde 71:207–226

    Article  Google Scholar 

  • Bosenberg JS, Delaney JS, Hewins RH (2012) A petrological and chemical reexamination of Main Group pallasite formation. Geochim Cosmochim Acta 89:134–158

    Article  Google Scholar 

  • Day JMD, Walker RJ, Ash RD, Liu Y, Rumble D III, Irving AJ, Goodrich CA, Tait K, McDonough WF, Taylor LA (2012) Orgin of felsic achondrites graves Nunataks 06128 and 06129 and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochim Cosmochim Acta 81:94–128

    Article  Google Scholar 

  • Delaney JS, Takeda H, Prinz M, Nehru CE, Harlow GE (1983) The nomenclature of polymict basaltic achondrite. Meteoritics 18:103–111

    Article  Google Scholar 

  • Goodrich CA, Scott ERD, Fioretti AM (2004) Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Chem Erde 64:283–327

    Article  Google Scholar 

  • Greenwood RC, Franchi IA, Jambon A, Buchanan PC (2005) Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435:916–918

    Article  Google Scholar 

  • Greenwood RC, Franchi IA, Gibson JM, Benedix GK (2012) Oxygen isotope variation in primitive achondrites: the influence of primordial, asteroidal and terrestrial processes. Geochim Cosmochim Acta 94:146–163

    Article  Google Scholar 

  • Greenwood RC, Barrat JA, Scott ERD, Haack H, Buchanan PC, Franchi IA, Yamaguchi A, Johnson D, Bevan AWR, Burbine TH (2015) Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochim Cosmochim Acta 169:115–136

    Article  Google Scholar 

  • Hiesinger H, Head JW III, Wolf U, Jaumann R, Neukum G (2003) Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J Geophys Res 108. doi:10.1029/2002JE001985

    Google Scholar 

  • Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A, Lorand J-P, Gopel C, Fieni C, Pont S, Deldicque D (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503:513–517

    Article  Google Scholar 

  • Hutchison R (2004) Meteorites: a petrologic and isotopic synthesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Keil K (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chem Erde 70:295–317

    Article  Google Scholar 

  • Keil K (2012) Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chem Erde 72:191–218

    Article  Google Scholar 

  • Keil K (2014) Brachinite meteorites: partial melt residues from an FeO-rich asteroid. Chem Erde 74:311–329

    Article  Google Scholar 

  • Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Chem Erde 65:297–346

    Article  Google Scholar 

  • Korotev RL (2016) Lunar meteorites. http://meteorites.wustl.edu/lunar/. Accessed 1 Jan 2016

  • Krot AN, Scott ERD, Goodrich CA, Weisberg MK (2014) Classification of meteorites and their genetic relationships. In: Davis M (ed) Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 1–63

    Google Scholar 

  • McCoy TJ, Keil K, Clayton RN, Mayeda TK, Bogard DD, Garrison DH, Wieler R (1997) A petrologic and isotopic study of lodranites: evidence for early formation as partial melt residues from heterogeneous precursors. Geochim Cosmochim Acta 61:623–637

    Article  Google Scholar 

  • McDermott KH, Greenwood RC, Scott ERD, Franchi IA, Anand M (2016) Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites. Geochim Cosmochim Acta 173:97–113

    Article  Google Scholar 

  • McSween HY, McLennan SM (2014) Mars. In: Davis AM (ed) Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 251–300

    Chapter  Google Scholar 

  • Meteoritical Bulletin Database (2016) https://www.lpi.usra.edu/meteor/metbull.php. Accessed 4 Jan 2016

  • Mittlefehldt DW (2014) Achondrites. In: Davis AM (ed) Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 235–265

    Chapter  Google Scholar 

  • Mittlefehldt DW (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chem Erde 75:155–183

    Article  Google Scholar 

  • Mittlefehldt DW, McCoy TJ, Goodrich CA, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. In: Papike JJ (ed) Planetary materials, Reviews in mineralogy, vol 36. Mineralogical Society of America, Washington, DC, pp 4.1–4.195

    Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O (2001) Ages and geologic histories of martian meteorites. Chronol Evol Mars 96:105–164

    Article  Google Scholar 

  • Riches AJV, Day JMD, Walker RJ, Simonetti A, Liu Y, Neal CR, Taylor LA (2012) Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth Planet Sci Lett 353–354:208–218

    Article  Google Scholar 

  • Righter K, Drake MJ (1997) A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit Planet Sci 32:929–944

    Article  Google Scholar 

  • Schiller M, Connelly JN, Glad AC, Mikouchi T, Bizzaro M (2015) Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet Sci Lett 420:45–54

    Article  Google Scholar 

  • Takeda H (1987) Mineralogy of Antarctic ureilites and a working hypothesis for their origin and evolution. Earth Planet Sci Lett 81:358–370

    Article  Google Scholar 

  • Warren PH, Taylor GJ (2014) The moon. In: Davis AM (ed) Treatise on geochemistry, vol 1, 2nd edn. Elsevier, Amsterdam, pp 559–599

    Google Scholar 

  • Weisberg MK, McCoy TJ, Krot AN (2006) Systematics and evaluation of meteorite classification. In: Lauretta DS, McSween HY Jr (eds) Meteorite and early solar system II. The University of Arizona Press, Tucson, pp 19–52

    Google Scholar 

  • Yamaguchi A, Barrat JA, Greenwood RC, Shirai N, Okamoto C, Setoyanagi T, Ebihara M, Franchi IM, Bohn M (2009) Crustal partial melting on Vesta: evidence from highly metamorphosed eucrites. Geochim Cosmochim Acta 73:7162–7182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Yamaguchi , Jean-Alix Barrat or Richard Greenwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamaguchi, A., Barrat, JA., Greenwood, R. (2018). Achondrites. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_303

Download citation

Publish with us

Policies and ethics