Skip to main content

Zirconium

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 141 Accesses

FormalPara Element Data

Atomic Symbol: Zr

Atomic Number: 40

Atomic Weight: 91.224

Isotopes and Abundances: 90Zr, 51.45% 91Zr,

11.22%, 92Zr, 17.15%, 94Zr, 17.38%, 96Zr, 2.80%

1 Atm Melting Point: 1855 °C

1 Atm Boiling Point: 4371 °C

Common Valences: 4+

Ionic Radii: sixfold: 72 pm

Pauling Electronegativity: 1.33

First Ionization Potential: 640 kJ/mol

Chondritic (CI) Abundance: 3.63 ppm

Silicate Earth Abundance: 10.3 ppm

Crustal Abundance: 132 ppm

Seawater Abundance: 9–300 pmol/kg

Core Abundance: n/a

Properties

Zirconium is a transition metal of low toxicity with the atomic number of 41. Zirconium has five stable isotopes (90, 91, 92, 94, 96) with an atomic mass of 91.224(2) (CIAAW 2015). The isotope 92Zr is the decay product of the now extinct 92Nb with a half-life of 34.7 Ma (e.g., Münker et al. 2000; Schönbächler et al. 2002; Iizuka et al. 2016). In some chondrites and CAIs, the neutron-rich isotope 96Zr is slightly enriched relative to other Zr isotopes, reflecting variable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akram W, Schönbächler M, Bisterzo S, Gallino M (2015) Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. Geochim Cosmochim Acta 165:484–500

    Article  Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bruland KW, Middag R, Lohan MC (2014) Controls of trace metals in seawater. In: Mottl MJ, Elderfield H (eds) The oceans and marine geochemistry, Treatise on geochemistry, vol 8. Elsevier, Amsterdam, pp 19–51

    Google Scholar 

  • CIAAW (2015) Commission on isotopic abundances and atomic weights. http://ciaaw.org/atomic-weights.htm

  • David K, Schiano P, Allègre CJ (2000) Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet Sci Lett 178:285–301

    Article  Google Scholar 

  • Firdaus ML, Minami T, Norisuye K, Sohrin Y (2011) Strong elemental fractionation of Zr-Hf and Nb-Ta across the Pacific Ocean. Nat Geosci 4:227–230

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Godfrey LV, White WM, Salters VJM (1996) Dissolved zirconium and hafnium distributions across a shelf break in the northeastern Atlantic Ocean. Geochim Cosmochim Acta 60(21):3995–4006

    Article  Google Scholar 

  • Hermann J, Rubatto D (2009) Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol 265:512–526

    Article  Google Scholar 

  • Iizuka T, Lai YJ, Akram W, Amelin Y, Schönbächler M (2016) The initial abundance and distribution of 92Nb in the Solar System. Earth Planet Sci Lett 439:172–181

    Article  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66(17):3109–3123

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys Earth Planet Inter 139:129–147

    Article  Google Scholar 

  • Münker C, Weyer S, Mezger K, Rehkämper M, Wombacher F, Bischoff A (2000) 92Nb-92Zr and the early differentiation history of planetary bodies. Science 289:1538–1542

    Article  Google Scholar 

  • Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T, Mezger K (2003) Evolution of planetary cores and the Earth – moon system from Nb/Ta systematics. Science 301:84–87

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2014) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–39

    Google Scholar 

  • Pearce JW, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pfänder JA, Münker C, Stracke A, Mezger K (2007) Nb/Ta and Zr/Hf in ocean island basalts - implications for crust-mantle differentiation and the fate of Niobium. Earth Planet Sci Lett 254(1-2):158–172

    Article  Google Scholar 

  • Pfänder JA, Jung S, Münker C, Stracke A, Mezger K (2012) A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget – evidence from continental basalts from Central Germany. Geochim Cosmochim Acta 77:232–251

    Article  Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. In: The crust, Treatise on geochemistry, vol 4. Elsevier, Amsterdam, pp 1–51

    Google Scholar 

  • Schmidt K, Bau M, Hein JR, Koschinsky A (2014) Fractionation of the geochemical twins Zr–Hf and Nb–Ta during scavenging from seawater by hydrogenetic ferromanganese crusts. Geochim Cosmochim Acta 140:468–487

    Article  Google Scholar 

  • Schönbächler M, Rehkämper M, Halliday AN, Lee DC, Bourot-Denise M, Zanda B, Hattendorf B, Günther D (2002) Niobium-zirconium chronometry and early solar sytem development. Science 295:1705–1708

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  Google Scholar 

  • USGS (2014) http://minerals.usgs.gov/minerals/pubs/commodity/zirconium/mcs-2014-zirco.pdf

  • Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184:97–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Münker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Münker, C. (2018). Zirconium. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_264

Download citation

Publish with us

Policies and ethics