Skip to main content

Earth’s Core

  • Reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 154 Accesses

Definition

The composition of the Earth’s core is essentially 85% Fe, 5% Ni, and ~10% other, by weight. The details are more complicated, with the “other” being a light element component, which results in the core having on average a lower mean atomic number than that of iron. Birch (1952, 1964) recognized a 10% difference in the density of the outer core relative to an iron-nickel alloy at core pressure and temperature conditions. Anderson and Isaak (2002) recommend that the core density deficit is between 3% and 7%. Both the liquid outer core (~95% by mass) and solid inner core (~5%) contain a fraction of a light element (nominally in a ~2/1 proportion, respectively).

Properties

For more than a century the Earth has been described as having a metallic core surrounded by a silicate shell. A brief history of this topic is given in McDonough (2014). Emil Wiechert in 1897 first subdivided the Earth’s interior into these two main components and later, his graduate student Beno Gutenberg,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen MB, Elliott T, Freymuth H, Sims KWW, Niu Y, Kelley KA (2015) The terrestrial uranium isotope cycle. Nature 517:356–359

    Article  Google Scholar 

  • Anderson OL, Isaak DG (2002) Another look at the core density deficit of Earth’s outer core. Phys Earth Planet Inter 131:19–27

    Article  Google Scholar 

  • Antonangeli D, Siebert J, Badro J, Farber DL, Fiquet G, Morard G, Ryerson FJ (2010) Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe-Ni-Si alloys. Earth Planet Sci Lett 295:292–296

    Article  Google Scholar 

  • Badro J, Brodholt JP, Piet H, Siebert J, Ryerson FJ (2015) Core formation and core composition from coupled geochemical and geophysical constraints. Proc Natl Acad Sci USA 112:12310–12314

    Article  Google Scholar 

  • Badro J, Cote AS, Brodholt JP (2014) A seismologically consistent compositional model of Earth’s core. Proc Natl Acad Sci USA 111:7542–7545

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Gregoryanz E, Occelli F, Antonangeli D, d’Astuto M (2007) Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth Planet Sci Lett 254:233–238

    Article  Google Scholar 

  • Badro J, Siebert J, Nimmo F (2016) An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536:326–328

    Article  Google Scholar 

  • Birch F (1952) Elasticity and Constitution of the Earth’s Interior. J Geophys Res 57:227–286

    Article  Google Scholar 

  • Birch F (1964) Density and Composition of Mantle and Core. J Geophys Res 69:4377–4388

    Article  Google Scholar 

  • Bouwman J, Lawson WA, Juhasz A, Dominik C, Feigelson ED, Henning T, Tielens AGGM, Waters LBFM (2010) The protoplanetary disk around the M4 Star Recx 5: Witnessing the influence of planet formation? Astrophys J Lett 723:L243–L247

    Article  Google Scholar 

  • Brenan JM, Bennett NR, Zajacz Z (2016) Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. In: Harvey J, Day JMD (eds) Highly siderophile and strongly chalcophile elements in high-temperature geochemistry and cosmochemistry, vol 81. Mineralogical Society of America, Washington, DC, pp 1–88

    Google Scholar 

  • Brennecka GA, Budde G, Kleine T (2015) Uranium isotopic composition and absolute ages of Allende chondrules. Meteorit Planet Sci 50:1995–2002

    Article  Google Scholar 

  • Canup RM (2012) Forming a Moon with an Earth-like composition via a Giant Impact. Science 338:1052–1055

    Article  Google Scholar 

  • Castillo PR (2016) A proposed new approach and unified solution to old Pb paradoxes. Lithos 252:32–40

    Article  Google Scholar 

  • Chambat F, Ricard Y, Valette B (2010) Flattening of the Earth: Further from hydrostaticity than previously estimated. Geophys J Int 183:727–732

    Article  Google Scholar 

  • Connelly JN, Bizzarro M, Krot AN, Nordlund A, Wielandt D, Ivanova MA (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–655

    Article  Google Scholar 

  • Corgne A, Keshav S, Fei YW, McDonough WF (2007) How much potassium is in the Earth’s core? New insights from partitioning experiments. Earth Planet Sci Lett 256:567–576

    Article  Google Scholar 

  • Corgne A, Keshav S, Wood BJ, McDonough WF, Fei YW (2008) Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth’s accretion. Geochim Cosmochim Acta 72:574–589

    Article  Google Scholar 

  • Cottaar S, Buffett B (2012) Convection in the Earth’s inner core. Phys Earth Planet Inter 198:67–78

    Article  Google Scholar 

  • Cuk M, Stewart ST (2012) Making the Moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science 338:1047–1052

    Article  Google Scholar 

  • Cuk M, Hamilton DP, Lock SJ, Stewart ST (2016) Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature 539:402–406

    Article  Google Scholar 

  • DAlessio P, Merin B, Calvet N, Hartmann L, Montesinos B (2005) WWW database of models of accretion disks irradiated by the central star. Rev Mex Astron Astrofis 41:61–67

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • Day JMD, Brandon AD, Walker RJ (2016) Highly siderophile elements in Earth, Mars, the Moon, and Asteroids. In: Harvey J, Day JMD (eds) Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry, vol 81. Mineralogical Society of America, pp 161–238

    Google Scholar 

  • Dreibus G, Palme H (1996) Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim Cosmochim Acta 60:1125–1130

    Article  Google Scholar 

  • Elliott T, Zindler A, Bourdon B (1999) Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet Sci Lett 169:129–145

    Article  Google Scholar 

  • Engel K, McDonough WF (2016) Geochemical models of the Earth and the crustal geoneutrino flux. In: Ludhova L (ed) Geo-neutrino. Open Academic Press

    Google Scholar 

  • Fischer RA (2016) Melting of Fe alloys and the thermal structure of the core. In: Terasaki H, Fischer RA (eds) Deep Earth: physics and chemistry of the lower mantle and core. John Wiley & Sons, Inc., Washington, DC, pp 3–12

    Google Scholar 

  • Fischer RA, Nakajima Y, Campbell AJ, Frost DJ, Harries D, Langenhorst F, Miyajima N, Pollok K, Rubie DC (2015) High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim Cosmochim Acta 167:177–194

    Article  Google Scholar 

  • Fitoussi C, Bourdon B (2012) Silicon isotope evidence against an enstatite chondrite Earth. Science 335:1477–1480

    Article  Google Scholar 

  • Fitoussi C, Bourdon B, Wang XY (2016) The building blocks of Earth and Mars: a close genetic link. Earth Planet Sci Lett 434:151–160

    Article  Google Scholar 

  • Galer SJG, O’Nions RK (1985) Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316:778–782

    Article  Google Scholar 

  • Gomi H, Ohta K, Hirose K, Labrosse S, Caracas R, Verstraete MJ, Hernlund JW (2013) The high conductivity of iron and thermal evolution of the Earth’s core. Phys Earth Planet Inter 224:88–103

    Article  Google Scholar 

  • Halliday AN (2013) The origins of volatiles in the terrestrial planets. Geochim Cosmochim Acta 105:146–171

    Article  Google Scholar 

  • Helffrich G (2015) The hard sphere view of the outer core. Earth Planets Space 67:73

    Article  Google Scholar 

  • Hirose K, Labrosse S, Hernlund J (2013) Composition and State of the Core. Annu Rev Earth Planet Sci 41:657–691

    Article  Google Scholar 

  • Hirose K, Morard G, Sinmyo R, Umemoto K, Hernlund JW, Helffrich G, Labrosse S (2017) Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543:99–102

    Article  Google Scholar 

  • Huang Y, Chubakov V, Mantovani F, Rudnick RL, McDonough WF (2013) A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem Geophys Geosyst 14:2003–2029

    Article  Google Scholar 

  • Jephcoat A, Olson P (1987) Is the inner core of the Earth pure iron. Nature 325:332–335

    Article  Google Scholar 

  • Kimura K, Lewis RS, Anders E (1974) Distribution of gold and rhenium between nickeliron and silicate melts. Geochim Cosmochim Acta 38:683,781

    Article  Google Scholar 

  • Kleine T, Munker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–955

    Article  Google Scholar 

  • Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H, Jacobsen SB, Yin QZ, Halliday AN (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188

    Article  Google Scholar 

  • Kruijer TS, Touboul M, Fischer-Godde M, Bermingham KR, Walker RJ, Kleine T (2014) Protracted core formation and rapid accretion of protoplanets. Science 344:1150–1154

    Article  Google Scholar 

  • Kumari S, Paul D, Stracke A (2016) Open system models of isotopic evolution in Earth’s silicate reservoirs: implications for crustal growth and mantle heterogeneity. Geochim Cosmochim Acta 195:142–157

    Article  Google Scholar 

  • Labrosse S (2015) Thermal evolution of the core with a high thermal conductivity. Phys Earth Planet Inter 247:36–55

    Article  Google Scholar 

  • Labrosse S, Poirier JP, Le Mouel JL (2001) The age of the inner core. Earth Planet Sci Lett 190:111–123

    Article  Google Scholar 

  • Lee KKM, Steinle-Neumann G, Jeanloz R (2004) Ab-initio high-pressure alloying of iron and potassium: implications for the Earth’s core. Geophys Res Lett 31, L11603, https://doi.org/10.1029/2004GL019839

    Article  Google Scholar 

  • Li J, Agee CB (1996) Geochemistry of mantle-core differentiation at high pressure. Nature 381:686–689

    Article  Google Scholar 

  • Li J, Fei Y (2014) Experimental constraints on core composition. In: Carlson RW (ed) Treatise on geochemistry: the mantle. Elsevier, New York, pp 527–557

    Chapter  Google Scholar 

  • Lugaro M, Heger A, Osrin D, Goriely S, Zuber K, Karakas AI, Gibson BK, Doherty CL, Lattanzio JC, Ott U (2014) Stellar origin of the Hf-182 cosmochronometer and the presolar history of solar system matter. Science 345:650–653

    Article  Google Scholar 

  • MacPherson GJ, Kita NT, Ushikubo T, Bullock ES, Davis AM (2012) Wellresolved variations in the formation ages for Ca-Al-rich inclusions in the early solar system. Earth Planet Sci Lett 331:43–54

    Article  Google Scholar 

  • Malavergne V, Tarrida M, Combes R, Bureau H, Jones J, Schwandt C (2007) New high-pressure and high-temperature metal/silicate partitioning of U and Pb: implications for the cores of the Earth and Mars. Geochim Cosmochim Acta 71:2637–2655

    Article  Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66

    Article  Google Scholar 

  • Masters G, Gubbins D (2003) On the resolution of density within the Earth. Phys Earth Planet Inter 140:159–167

    Article  Google Scholar 

  • Masters TG, Shearer PM (1995) Seismic models of the Earth: elastic and anelastic. In: Ahrens TJ (ed) Global Earth Physics. American Geophysical Union, Washington, DC, pp 88–103

    Google Scholar 

  • McDonough WF (2014) Compositional models for the Earth’s core. In: Carlson RW (ed) Treatise on geochemistry: the mantle, 2nd edn. Elsevier, New York, pp 559–576

    Chapter  Google Scholar 

  • McDonough WF (2016) The composition of the lower mantle and core. In: Terasaki H, Fischer R (eds) Deep Earth: physics and chemistry of the lower mantle and core. AGU-Wiley, Washington, DC, pp 145–159

    Google Scholar 

  • McDonough WF, Sun SS (1995) The Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Nakajima M, Stevenson DJ (2015) Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet Sci Lett 427:286–295

    Article  Google Scholar 

  • O’Rourke JG, Stevenson DJ (2016) Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529:387–389

    Article  Google Scholar 

  • Paul D, White WM, Turcotte DL (2003) Constraints on the Th-232/U-238 ratio (kappa) of the continental crust. Geochem Geophys Geosyst 4

    Google Scholar 

  • Poirier JP (1994) Light-elements in the Earth’s outer core: a critical-review. Phys Earth Planet Inter 85:319–337

    Article  Google Scholar 

  • Ringwood AE (1984) The Bakerian lecture, 1983: the Earth’s core – its composition, formation and bearing upon the origin of the Earth. P Roy Soc Lond a Mat 395:1–46

    Article  Google Scholar 

  • Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K, Kegler P, Holzheid A, Palme H (2011) Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet Sci Lett 301:31–42

    Article  Google Scholar 

  • Rubie DC, Jacobson SA, Morbidelli A, O’Brien DP, Young ED, de Vries J, Nimmo F, Palme H, Frost DJ (2015) Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248:89–108

    Article  Google Scholar 

  • Sakamaki T, Ohtani E, Fukui H, Kamada S, Takahashi S, Sakairi T, Takahata A, Sakai T, Tsutsui S, Ishikawa D, Shiraishi R, Seto Y, Tsuchiya T, Baron AQR (2016) Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions. Sci Adv Vol. 2, no. 2, e1500802. https://doi.org/10.1126/sciadv.1500802

    Article  Google Scholar 

  • Sargent BA, Forrest WJ, Tayrien C, McClure MK, Li A, Basu AR, Manoj P, Watson DM, Bohac CJ, Furlan E, Kim KH, Green JD, Sloan GC (2009) Silica in protoplanetary disks. Astrophys J 690:1193–1207

    Article  Google Scholar 

  • Sze EKM, van der Hilst RD (2003) Core mantle boundary topography from short period PcP, PKP, and PKKP data. Phys Earth Planet Inter 135:27–46

    Article  Google Scholar 

  • Thibault Y, Walter MJ (1995) The influence of pressure and temperature on the metal-silicate partition-coefficients of nickel and cobalt in a model-C1 chondrite and implications for metal segregation in a deep magma ocean. Geochim Cosmochim Acta 59:991–1002

    Article  Google Scholar 

  • Tsuchiya T, Kawai K, Wang X, Ichikawa H, Dekura H (2016) Temperature of the Lower Mantle and Core based on ab initio mineral physics data. In: Terasaki H, Fischer R (eds) Deep Earth: physics and chemistry of the lower mantle and core. American Geophysical Union, Washington, DC, pp 13–30

    Chapter  Google Scholar 

  • van Boekel R, Min M, Leinert C, Waters LB, Richichi A, Chesneau O, Dominik C, Jaffe W, Dutrey A, Graser U, Henning T, de Jong J, Kohler R, de Koter A, Lopez B, Malbet F, Morel S, Paresce F, Perrin G, Preibisch T, Przygodda F, Scholler M, Wittkowski M (2004) The building blocks of planets within the “terrestrial” region of protoplanetary disks. Nature 432:479–482

    Article  Google Scholar 

  • Walker RJ (2016) Siderophile elements in tracing planetary formation and evolution. Geochem Perspect 5:1–142

    Article  Google Scholar 

  • Wasson JT, Kallemeyn GW (1988) Compositions of chondrites. Philos Trans R Soc A Math Phys Eng Sci 325:535–544

    Article  Google Scholar 

  • Watanabe K, Ohtani E, Kamada S, Sakamaki T, Miyahara M, Ito Y (2014) The abundance of potassium in the Earth’s core. Phys Earth Planet Inter 237:65–72

    Article  Google Scholar 

  • Wheeler KT, Walker D, Fei YW, Minarik WG, McDonough WF (2006) Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications for radioactivity in the Earth’s core. Geochim Cosmochim Acta 70:1537–1547

    Article  Google Scholar 

  • Williams Q, Hemley RJ (2001) Hydrogen in the deep Earth. Annu Rev Earth Planet Sci 29:365–418

    Article  Google Scholar 

  • Wood BJ (1993) Carbon in the core Earth planet. Sci Lett 117:593–607

    Google Scholar 

  • Yin QZ, Jacobsen SB, Yamashita K, Blichert-Toft J, Telouk P, Albarede F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952

    Article  Google Scholar 

  • Yoder CF (1995) Astrometric and geodetic properties of the Earth and the solar system. In: Ahrens TJ (ed) Global Earth Physics. American Geophysical Union, Washington, DC, pp 1–31

    Google Scholar 

  • Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351:493–496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. McDonough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McDonough, W.F. (2018). Earth’s Core. In: White, W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39312-4_258

Download citation

Publish with us

Policies and ethics