Skip to main content

Metamorphic Reactions and Processes

  • Living reference work entry
  • First Online:
  • 139 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

A metamorphic reaction is a chemical reaction that produces, or changes, an assemblage of metamorphic mineral and fluid phases in a rock. The changes affect the compositions of the phases and may also include changes in the phases that are present. Metamorphic processes are those processes that drive metamorphic reactions, by causing a change in the chemical conditions of the rock, such as the pressure or temperature. Metamorphic processes also commonly drive deformation .

Introduction

A metamorphic rock is a rock that has undergone mineralogical changes due to changing thermodynamic conditions since its formation. Prior to any metamorphism, the original rock, or protolith, may have been formed by solidification of a melt (an igneous protolith) or the lithification of discrete grains derived from weathering (a sedimentary protolith). Mineralogical changes are driven by metamorphic processes, which give rise to a great diversity of metamorphic minerals and mineral...

This is a preview of subscription content, log in via an institution.

References

  • Agard P, Yamato P, Jolivet L, Burov E (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci Rev 92:53–79

    Article  Google Scholar 

  • Angel RJ, Hazen RM, McCormick TC, Prewitt CT, Smyth JR (1988) Comparative compressibility of end-member feldspars. Phys Chem Miner 15:313–318

    Article  Google Scholar 

  • Aoki I, Takahashi E (2004) Density of MORB eclogite in the upper mantle. Phys Earth Planet In 143–144:129–143

    Article  Google Scholar 

  • Arrial P-A, Billen MI (2013) Influence of geometry and eclogitization on oceanic plateau subduction. Earth Planet Sci Lett 363:34–43

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Butler JP, Warren CJ (2009) Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett 287:116–129

    Article  Google Scholar 

  • Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M (1992) Non-ideal mixing in the phlogopite–annite binary: constraints from experimental data on Mg–Fe partitioning and a reformulation of the biotite–garnet geothermometer. Contrib Mineral Petrol 111:87–93

    Article  Google Scholar 

  • Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contrib Mineral Petrol 20:244–267

    Article  Google Scholar 

  • Chen Y, Ye K, TF W, Guo S (2013) Exhumation of oceanic eclogites: thermodynamic constraints on pressure, temperature, bulk composition and density. J Metamorph Geol 31:549–570

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014

    Article  Google Scholar 

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • Diener JFA, Powell R (2012) Revised activity–composition models for clinopyroxene and amphibole. J Metamorph Geol 30:131–142

    Article  Google Scholar 

  • England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc Lond 134:201–213

    Article  Google Scholar 

  • Eskola PE (1920) The mineral facies of rocks. Nor Geol Tidsskr 6:143–194

    Google Scholar 

  • Fyfe WS, Turner FJ (1966) Reappraisal of the metamorphic facies concept. Contrib Mineral Petrol 12:354–364

    Article  Google Scholar 

  • Goldschmidt WM (1915) Geologisch-petrographische Studien im Hochgebirge des stidlichen Norwegens. III. Die Kalksilikatgneise und Kalksilikatglimmerschiefer im Trondhjem-Gebiete. Norsk Videnskapelig Selskap i Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse 10

    Google Scholar 

  • Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34:845–869

    Article  Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res Solid Earth 108:2156–2202

    Google Scholar 

  • Harte B, Hudson NFC (1979) Pelite facies series and the temperatures and pressures of Dalradian metamorphism in E Scotland. In: Harris AL, Holland CH, Leake BE (eds) The Caledonides of the British Isles – reviewed. Geological Society special publications. Geological Society, London, pp 323–337

    Google Scholar 

  • Hensen BJ (1971) Theoretical phase relations involving cordierite and garnet in the system FeO–MgO–Al2O3–SiO2. Contrib Mineral Petrol 33:191–214

    Article  Google Scholar 

  • Hobbs BE, Archibald NJ, Etheridge MA, Wall VJ (1984) Tectonic history of the Broken Hill block, Australia. In: Kröner A, Greiling R (eds) Precambrian tectonics illustrated. Schweizerbart Science Publishers, Stuttgart, pp 353–368

    Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Johnson TE, Brown M (2004) Quantitative constraints on metamorphism in the Variscides of Southern Brittany – a complementary pseudosection approach. J Petrol 45:1237–1259

    Article  Google Scholar 

  • Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson TE, Kirkland CL, Reddy SM, Fischer S (2015) Grampian migmatites in the Buchan Block, NE Scotland. J Metamorph Geol 33:695–709

    Article  Google Scholar 

  • Kohn MJ, Spear FS (1989) Empirical calibration of geobarometers for the assemblage garnet + plagioclase + quartz. Am Mineral 74:77–84

    Google Scholar 

  • Konrad-Schmolke M, Zack T, O’Brien PJ, Jacob DE (2008) Combined thermodynamic and rare earth element modelling of garnet growth during subduction: examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:488–498

    Article  Google Scholar 

  • Korzhinskii DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals. Consultants Bureau, New York

    Google Scholar 

  • Marmo BA, Clarke GL, Powell R (2002) Fractionation of bulk rock composition due to porphyroblast growth: effects of eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. J Metamorph Geol 20:151–165

    Article  Google Scholar 

  • Miyashiro A (1961) Evolution of metamorphic belts. J Petrol 2:277–311

    Article  Google Scholar 

  • Moody JB, Meyer D, Jenkins JE (1983) Experimental characterization of the greenschist/amphibolite boundary in mafic systems. Am J Sci 283:48–92

    Article  Google Scholar 

  • Palin RM, Weller OM, Waters DJ, Dyck B (2016a) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7:591–607

    Article  Google Scholar 

  • Palin RM, White RW, Green ECR, Diener JFA, Powell R, Holland TJB (2016b) High-grade metamorphism and partial melting of basic and intermediate rocks. J Metamorph Geol 34:871–892

    Article  Google Scholar 

  • Palin RM, White RW, Green ECR (2016c) Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling. Precambrian Res 287:73–90

    Article  Google Scholar 

  • Peacock SM (1993) The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull 105:684–694

    Article  Google Scholar 

  • Pirjino F (1992) Hydrothermal mineral deposits: principles and fundamental concepts for the exploration geologist. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204

    Article  Google Scholar 

  • Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179

    Article  Google Scholar 

  • Powell R, Holland TJB, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588

    Article  Google Scholar 

  • Powell R, Guiraud M, White RW (2005) Truth and beauty in metamorphic phase-equilibria: conjugate variables and phase diagrams. Can Mineral 43:21–33

    Article  Google Scholar 

  • Powell R, White RW, Green ECR, Holland TJB, Diener JFA (2014) On parameterizing thermodynamic descriptions of minerals for petrological calculations. J Metamorph Geol 32:245–260

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 2131:461–461

    Google Scholar 

  • Smith WR, Missen RW (1982) Chemical reaction equilibrium analysis: theory and algorithms. Wiley InterScience, New York

    Google Scholar 

  • Spear FS, Cheney JT (1989) A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contrib Mineral Petrol 101:149–164

    Article  Google Scholar 

  • Tajčmanová L, Podladchikov Y, Powell R, Moulas E, Vrijmoed JC, Connolly JA (2014) Grain-scale pressure variations and chemical equilibrium in high-grade metamorphic rocks. J Metamorph Geol 32:195–207

    Article  Google Scholar 

  • Thompson JB Jr (1957) The graphical analysis of mineral assemblages in pelitic schists. Am Mineral 42:842–858

    Google Scholar 

  • Thompson JB (1959) Local equilibrium in metasomatic processes. In: Abelson PH (ed) Researches in geochemistry. Wiley, New York, pp 427–457

    Google Scholar 

  • Turner FJ (1948) Mineralogical and structural evolution of the metamorphic rocks. Geological Society of America Memoir, vol 30. The Geological Society of America, New York

    Google Scholar 

  • Vernon RH, Clarke GL (2008) Principles of metamorphic petrology. Cambridge University Press, New York

    Google Scholar 

  • Vernon RH, Ransom DM (1971) Retrograde schists of the amphibolite facies at Broken Hill, new South Wales. J Geol Soc Aust 18:267–277

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • White RW, Powell R, Baldwin JA (2008) Calculated phase equilibria involving chemical potentials to investigate the textural evolution of metamorphic rocks. J Metamorph Geol 26:181–198

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014a) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  Google Scholar 

  • White RW, Powell R, Johnson TE (2014b) The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J Metamorph Geol 32:809–828

    Article  Google Scholar 

  • Winter JK, Ghose S (1979) Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs. Am Mineral 64:573–586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor C. R. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Green, E.C.R. (2018). Metamorphic Reactions and Processes. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics