Skip to main content

Polyoxometalates and Other Metal-Oxo Clusters in Nature

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Metal-oxo clusters are broadly defined as polynuclear species (meaning containing two or more metal cations) with ligands of H2O, OH−, and O2− and are molecular. Molecular means they have a distinct chemical formula. In the laboratory, they are ideally synthesized in water in a discrete form (meaning all clusters present in the aqueous synthesis solution have the exact same formula and geometry). Solubility of these clusters in water necessitates a negative or positive charge; and the metal-oxo clusters are isolated by crystallization with counterions of the opposite charge. Polyoxometalates, commonly known as POMs, are one subset of metal-oxo clusters. These are discrete polynuclear metal-oxo clusters specifically composed of the early d0 transition metals in their highest oxidation state with no valence electrons. These POM-forming metal cations include V5+, Nb5+, Ta5+, Mo6+, and W6+. POMs are negatively charged and possess predominantly O2−ligands. All metal-oxo...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atencio, D., Coutinho, J. M. V., Doriguetto, A. C., Mascarenhas, Y. P., Ellena, J., and Ferrari, V. C., 2008. Menezesite, the first natural heteropolyniobate, from Cajati, Sao Paulo, Brazil: description and crystal structure. American Mineralogist, 93, 81–87.

    Article  Google Scholar 

  • Baes, C. F., and Mesmer, R. E., 1976. The Hydrolysis of Cations. New York: Wiley.

    Google Scholar 

  • Banfield, J. F., Welch, S. A., Zhang, H. Z., Ebert, T. T., and Penn, R. L., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289, 751–754.

    Article  Google Scholar 

  • Barclay-Kamb, W., 1960. The crystal structure of zunyite. Acta Crystallographica, 13, 15–24.

    Article  Google Scholar 

  • Baumgartner, J., Dey, A., Bomans, P. H. H., Le Coadou, C., Fratzl, P., Sommerdijk, N. A. J. M., and Faivre, D., 2013. Nucleation and growth of magnetite from solution. Nature Materials, 12, 310–314.

    Article  Google Scholar 

  • Bolze, J., Peng, B., Dingenouts, N., Panine, P., Narayanan, T., and Ballauff, M., 2002. Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time-resolved SAXS. Langmuir, 18, 8364–8369.

    Article  Google Scholar 

  • Brugger, J., Meisser, N., Krivovichev, S., Armbruster, T., and Favreau, G., 2007. Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe3+ in trigonal prismatic coordination. American Mineralogist, 92, 1630–1639.

    Article  Google Scholar 

  • Burns, P. C., Kubatko, K. A., Sigmon, G., Fryer, B. J., Gagnon, J. E., Antonio, M. R., and Soderholm, L., 2005. Actinyl peroxide nanospheres. Angewandte Chemie International Edition, 44, 2135–2139.

    Article  Google Scholar 

  • Casey, W. H., 2006. Large aqueous aluminum hydroxide molecules. Chemical Reviews, 106, 1–16.

    Article  Google Scholar 

  • Cooper, M. A., Abdu, Y. A., Ball, N. A., Cerny, P., Hawthorne, F. C., and Kristiansen, R., 2012. Aspedamite, ideally (12)(Fe3+, Fe2+)(3)Nb4[Th(Nb, Fe3+)12O42]{(H2O),(OH)}12, A new heteropolyniobate mineral species from the Herrebokasa Quarry, Aspedammen, Ostfold, Southern Norway: description and crystal structure. Canadian Mineralogist, 50, 793–804.

    Article  Google Scholar 

  • Friis, H., Larsen, A. O., Kampf, A. R., Evans, R. J., Selbekk, R. S., Sanchez, A. A., and Kihle, J., 2014. Peterandresenite, Mn4Nb6O19•14H2O, a new mineral containing the Lindqvist ion from a syenite pegmatite of the Larvik Plutonic Complex, southern Norway. European Journal of Mineralogy, 26, 567–576.

    Article  Google Scholar 

  • Furrer, G., Phillips, B. L., Ulrich, K. U., Pothig, R., and Casey, W. H., 2002. The origin of aluminum flocs in polluted streams. Science, 297, 2245–2247.

    Article  Google Scholar 

  • Gebauer, D., Volkel, A., and Colfen, H., 2008. Stable prenucleation calcium carbonate clusters. Science, 322, 1819–1822.

    Article  Google Scholar 

  • Gebauer, D., Kellermeier, M., Gale, J. D., Bergstrom, L., and Colfen, H., 2014. Pre-nucleation clusters as solute precursors in crystallisation. Chemical Society Reviews, 43, 2348–2371.

    Article  Google Scholar 

  • Gunter, J. R., Schmalle, H. W., and Dubler, E., 1990. Crystal-structure and properties of a new magnesium heteropoly-tungstate, Mg7(Mgw12O42)(OH)4(H2O)8, and the isostructural compounds of manganese, iron, cobalt and nickel. Solid State Ionics, 43, 85–92.

    Article  Google Scholar 

  • Kampf, A. R., Hughes, J. M., Marty, J., Nash, B. P., Chen, Y. S., and Steele, I. M., 2014a. Bluestreakite, K4Mg2(V4+ 2V5+ 8O28) · 14H2O, A new mixed-valence decavanadate mineral from the Blue Streak Mine, Montrose County, CO: crystal structure and descriptive mineralogy. The Canadian Mineralogist, 52, 1007–1018.

    Article  Google Scholar 

  • Kampf, A. R., Hughes, J. M., Nash, B. P., Wright, S. E., Rossman, G. R., and Marty, J., 2014b. Ophirite, Ca2Mg4[Zn2Mn2 3+(H2O)2 (Fe3+W9O34)2]•46H2O, a new mineral with a heteropolytungstate tri-lacunary Keggin anion. American Mineralogist, 99, 1045–1051.

    Article  Google Scholar 

  • Keggin, J. F., 1933. Structure of the molecule of 12-phosphotungstic acid. Nature, 131, 908–909.

    Article  Google Scholar 

  • Limanski, E. M., Piepenbrink, M., Droste, E., Burgemeister, K., and Krebs, B., 2002. Syntheses and X-ray characterization of novel [M4(H2O)2(XW9O34)2]n- (M = CuII, X = CuII; and M = FeIII, X = FeIII) polyoxotungstates. Journal of Cluster Science, 13, 369–379.

    Article  Google Scholar 

  • Mensinger, Z. L., Wang, W., Keszler, D. A., and Johnson, D. W., 2012. Oligomeric group 13 hydroxide compounds-a rare but varied class of molecules. Chemical Society Reviews, 41, 1019–1030.

    Article  Google Scholar 

  • Michel, F. M., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. A. A., Phillips, B. L., and Parise, J. B., 2007. The structure of ferrihydrite, a nanocrystalline material. Science, 316, 1726–1729.

    Article  Google Scholar 

  • Nyman, M., and Burns, P. C., 2012. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chemical Society Reviews, 41, 7354–7367.

    Article  Google Scholar 

  • Panasci, A. F., Ohlin, C. A., Harley, S. J., and Casey, W. H., 2012. Rates of water exchange on the [Fe-4(OH)2(hpdta)2(H2O)4] molecule and its implications for geochemistry. Inorganic Chemistry, 51, 6731–6738.

    Article  Google Scholar 

  • Qiu, J., and Burns, P. C., 2013. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chemical Reviews, 113, 1097–1120.

    Article  Google Scholar 

  • Rustad, J. R., and Casey, W. H., 2012. Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution. Nature Materials, 11, 223–226.

    Article  Google Scholar 

  • Sadeghi, O., Zakharov, L. N., and Nyman, M., 2015. Aqueous formation and manipulation of the iron-oxo Keggin ion. Science, 347, 1359–1362.

    Article  Google Scholar 

  • Wang, W., Wentz, K. M., Hayes, S. E., Johnson, D. W., and Keszler, D. A., 2011. Synthesis of the hydroxide cluster [Al13(μ 3-OH6)(μ -OH)18(H2O)24]15+ from an aqueous solution. Inorganic Chemistry, 50, 4683–4685.

    Article  Google Scholar 

  • Winkler, J. R., and Gray, H. B., 2012. Electronic structures of oxo-metal ions. Structure and Bonding, 142, 17–28.

    Article  Google Scholar 

  • Zhu, M., Frandsen, C., Wallace, A. F., Legg, B., Khalid, S., Zhang, H., Morup, S., Banfield, J. F., and Waychunas, G. A., 2016. Precipitation pathways for ferrihydrite formation in acidic solutions. Geochimica et Cosmochimica Acta, 172, 247–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May Nyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Nyman, M. (2016). Polyoxometalates and Other Metal-Oxo Clusters in Nature. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics