Skip to main content

Mineral Genesis

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 71 Accesses

Definition

Mineral genesis addresses the questions of where, why, and how minerals form and disappear, on and in the Earth (see also Crystal Growth).

The Crystalline Earth and Its Dynamics

Minerals, essentially as natural crystals, are the major constituents of the core, the mantle, and the crust of our planet. In the mantle, they form the viscous solid matter involved in slow convective movements which act as the force-transmitting medium for plate tectonics. As such, minerals undergo phase transitions, polymorphic transitions, and more generally nucleation, growth as well as resorption. This occurs in response to local and/or temporal changes in pressure/stress, temperature, and chemical composition. Internal heat production of the Earth is ultimately the cause of mineral dynamics. Most active and diverse kinetic phenomena of these kinds are expected to take place where temperature gradients and chemical gradients are prominent, i.e., in and on the crust.

Mineral growthin the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baronnet A (1982) Ostwald ripening in solution. The case of calcite and mica. Estud Geol 38:185–198

    Google Scholar 

  • Baronnet A (1984) Growth kinetics of the silicates. A review of basic concepts. Fortschr Mineral 62:187–232

    Google Scholar 

  • Bravais A (1866) Etudes Cristallographiques. Gauthier-Villars, Paris

    Google Scholar 

  • Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc Lond 243:299–358

    Article  Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester, p 288

    Book  Google Scholar 

  • Cordier P, Leroux H (2008) Ce que disent les minéraux. Belin-Pour la science, Paris

    Google Scholar 

  • De Yoreo et al (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environment. Science 349(6247):aaa6760

    Article  Google Scholar 

  • Dekeyser W, Amelinckx S (1955) Les dislocations et la croissance des cristaux. Masson, Paris

    Google Scholar 

  • Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravais. Am Mineral 22:446–467

    Google Scholar 

  • Garcia-Ruiz JM, Melero-Garcia E, Hyde ST (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365

    Article  Google Scholar 

  • Garcia-Ruiz JM, Nakouzi E, Kotopoulou E, Tamborino L, Steinbock O (2017) Biomimetic mineral self-organization from silica-rich spring waters. Sci Adv 3:e1602285

    Article  Google Scholar 

  • Grigor’ev DP (1965) Ontogeny of minerals. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. Acta Crystallogr 8:49–52

    Article  Google Scholar 

  • Jambon A (1980) Isotopic fractionation: a kinetic model for crystals growing from silicate melts. Geochim Cosmochim Acta 44:1373–1380

    Article  Google Scholar 

  • Kirkpatrick RJ (1983) Theory of nucleation in silicate melts. Am Mineral 68:66–77

    Google Scholar 

  • Kirkpatrick RJ, Kuo LC, Melchior J (1981) Crystal growth in incongruently-melting compositions: programmed cooling experiments with diopside. Am Mineral 66:223–241

    Google Scholar 

  • Kostov I (1965) Crystal habit and mineral genesis. Bull Strasimir Dimitrov Inst Geol 14:33–49

    Google Scholar 

  • Kostov I, Kostov RI (1999) Crystal habit of minerals, Bulgarian academic monographs 1. Prof. Marin Drinov Academic Publishing House and Pensoft, Sofia, p 415

    Google Scholar 

  • Ostwald W (1897) Studien über die Bildung und Umwandlung fester Körper. Z Phys Chem 22:289–330

    Google Scholar 

  • Paquette J, Reeder RJ (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Acta 59:735–749

    Article  Google Scholar 

  • Stranski IN (1928) Zur Theorie der Kristallswachstums. Z Phys Chem A 136:259–278

    Google Scholar 

  • Sunagawa I (1977) Natural crystallization. J Cryst Growth 42:214–223

    Article  Google Scholar 

  • Sunagawa I (1984) Growth of crystals in Nature. In: Sunagawa I (ed) Materials science of the Earth’s interior. Terra Scientific Publication Company, Tokyo, pp 61–103

    Google Scholar 

  • Sunagawa I (1987) Morphology of Minerals. In: Sunagawa I (ed) Morphology of crystals: part B. Terra Scientific Publication Company, Tokyo, pp 509–587

    Google Scholar 

  • Welsch B, Faure F, Famin V, Baronnet A, Bachélery P (2013) Dendritic crystallization; a single process for all the textures of olivine in basalts? J Petrol 54(3):539–574

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain J. Baronnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Baronnet, A.J. (2018). Mineral Genesis. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_342-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_342-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics