Skip to main content

Fission Track Analysis

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 766 Accesses

Definition

Fission track analysis is the study of microscopic linear traces of radiation damage in minerals and natural glass formed by radioactive decay of the 238U isotope of uranium by spontaneous fission. The constant accumulation rate of fission tracks provides a means to date geologic materials, and the gradual fading of fission tracks (annealing) at elevated temperatures over geologic time can be used to elucidate host rock thermal histories.

Introduction: What Are Fission Tracks?

Radioactive decay of natural uranium occurs by two processes: alpha and beta decay to stable isotopes of lead – the basis of U-Pb, (U-Th)/He, and U-series dating – and by natural spontaneous fission. The latter process is restricted almost exclusively to the 238U isotope of uranium and occurs with a probability almost two million times lower than U to Pb alpha decay . The energy released by spontaneous fission propels two fission fragments in opposite directions, which in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bernet, M., and Spiegel, C., 2004. Detrital Thermochronology: Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts. Boulder: Geological Society of America. Geological Society of America Special Publication, Vol. 378.

    Google Scholar 

  • Braun, J., Van der Beek, P., and Batt, G., 2006. Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data. New York: Cambridge University Press.

    Book  Google Scholar 

  • Burtner, R. L., Nigrini, A., and Donelick, R. A., 1994. Thermochronology of lower cretaceous source rocks in the Idaho-Wyoming thrust belt. Bulletin of the American Association of Petroleum, 78, 1613–1636.

    Google Scholar 

  • Carlson, W. D., Donelick, R. A., and Ketcham, R. A., 1999. Variability of apatite fission-track annealing kinetics: I. experimental results. American Mineralogist, 84, 1213–1223.

    Article  Google Scholar 

  • Chew, D. M., and Donelick, R. A., 2012. Combined apatite fission-track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. In Sylvester, P. (ed.), Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Québec: Mineralogical Association of Canada. Short Course, pp. 219–248.

    Google Scholar 

  • Donelick, R. A., O’Sullivan, P. B., and Ketcham, R. A., 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58, 49–94.

    Article  Google Scholar 

  • Fleischer, R. L., and Price, P. B., 1964. Glass dating by fission fragment tracks. Journal of Geophysical Research, 69, 331–339.

    Article  Google Scholar 

  • Fleischer, R. L., Miller, D. S., Price, P. B., and Symes, E. M., 1964. Fission-track ages and track-annealing behavior of some micas. Science, 143, 349–351.

    Article  Google Scholar 

  • Fleischer, R. L., Price, P. B., and Walker, R. M., 1965. Ion explosion spike mechanism for formation of charged-particle tracks in solids. Journal of Applied Physics, 36, 3645–3652.

    Article  Google Scholar 

  • Fleischer, R. L., Price, P. B., and Walker, R. M., 1975. Nuclear Tracks in Solids: Principles and Applications. Berkeley: University of California Press.

    Google Scholar 

  • Galbraith, R. F., 2005. Statistics for Fission Track Analysis. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research, 117, B02408.

    Google Scholar 

  • Gallagher, K., Brown, R. W., and Johnson, C., 1998. Fission track analysis and its application to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572.

    Article  Google Scholar 

  • Gleadow, A. J. W., and Duddy, I. R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5, 169–174.

    Article  Google Scholar 

  • Gleadow, A. J. W., and Seiler, C., 2015. Fission track dating and thermochronology. In Rink, W. J., and Thompson, J. W. (eds.), Encyclopedia of Scientific Dating Methods. Dordrecht: Springer.

    Google Scholar 

  • Gleadow, A. J. W., Gleadow, S. J., Belton, D. X., Kohn, B. P., and Krochmal, M. S., 2009. Coincidence mapping a key strategy for automated counting in fission track dating. In Lisker, F., Ventura, B., and Glasmacher, U. A. (eds.), Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. London: Geological Society. Geological Society of London Special Publication, Vol. 324, pp. 25–36.

    Google Scholar 

  • Green, P. F., Duddy, I. R., Gleadow, A. J. W., et al., 1986. Thermal annealing of fission tracks in apatite.1. A qualitative description. Chemical Geology, 59, 237–253.

    Google Scholar 

  • Green, P. F., Duddy, I. R., Laslett, G. M., and Hegarty, K. A., 1989. Thermal annealing of fission tracks in apatite. 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology (Isotope Geoscience Section), 79, 155–182.

    Google Scholar 

  • Hasebe, N., Barbarand, J., Jarvis, K., et al., 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207, 135–145.

    Article  Google Scholar 

  • Hurford, A. J., 1990. Standardization of fission track dating calibration: recommendation by the fission track working group of the I.U.G.S. subcommission on geochronology. Chemical Geology, 80, 171–178.

    Google Scholar 

  • Hurford, A. J., and Green, P. F., 1981. A reappraisal of neutron dosimetry and uranium-238 lamda-f values in fission-track dating. Nuclear Tracks and Radiation Measurements, 5, 53–61.

    Google Scholar 

  • Hurford, A. J., and Green, P. F., 1982. A users’ guide to fission track dating calibration. Earth and Planetary Science Letters, 59, 343–354.

    Article  Google Scholar 

  • Hurford, A. J., and Green, P. F., 1983. The zeta age calibration of fission-track dating. Isotope Geoscience, 1, 285–317.

    Google Scholar 

  • Ketcham, R. A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58, 275–314.

    Article  Google Scholar 

  • Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92, 799–810.

    Article  Google Scholar 

  • Laslett, G. M., Kendall, W. S., Gleadow, A. J. W., and Duddy, I. R., 1982. Bias in measurement of fission-track length distributions. Nuclear Tracks and Radiation Measurements, 6, 79–85.

    Google Scholar 

  • Laslett, G. M., Green, P. F., Duddy, I. R., and Gleadow, A. J. W., 1987. Thermal annealing of fission tracks in apatite. 2. A quantitative analysis. Chemical Geology, 65, 1–13.

    Article  Google Scholar 

  • Li, W., Lang, M., Gleadow, A. J. W., et al., 2012. Thermal annealing of unetched fission tracks in apatite. Earth and Planetary Science Letters, 321–322, 121–127.

    Article  Google Scholar 

  • Lisker, F., Ventura, B., and Glasmacher, U. A., 2009. Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. London: Geological Society. Geological Society of London Special Publication, Vol. 324.

    Google Scholar 

  • Price, P. B., and Walker, R. M., 1962. Chemical etching of charged-particle tracks in solids. Journal of Applied Physics, 33, 3407–3412.

    Article  Google Scholar 

  • Price, P. B., and Walker, R. M., 1963. Fossil tracks of charged particles in mica and the age of minerals. Journal of Geophysical Research, 68, 4847–4862.

    Article  Google Scholar 

  • Rahn, M. K., Brandon, M. T., Batt, G. E., and Garver, J. I., 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist, 89, 473–484.

    Article  Google Scholar 

  • Reiners, P. W., and Ehlers, T. A., Low-temperature thermochronology: techniques, interpretations, and applications. Reviews in mineralogy and geochemistry 58, Mineralogical Society of America, 622 p.

    Google Scholar 

  • Silk, E. C. H., and Barnes, R. S., 1959. Examination of fission fragment tracks with an electron microscope. Philosophical Magazine, 4, 970–972.

    Article  Google Scholar 

  • Tagami, T., Galbraith, R. F., Yamada, R., and Laslett, G. M., 1998. Revised annealing kinetics of fission tracks in zircon and geological implications. In Van den haute, P., and De Corte, F. (eds.), Advances in Fission-Track Geochronology. Dordrecht: Kluwer, pp. 99–112.

    Chapter  Google Scholar 

  • Wagner, G. A., and Van den haute, P., 1992. Fission-Track Dating. Dordrecht: Kluwer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart N. Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Thomson, S.N. (2016). Fission Track Analysis. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_290-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_290-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics