Skip to main content

Platinum Group Elements

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The Platinum Group Elements (PGE: Osmium, Iridium, Ruthenium, Rhodium, Platinum, and Palladium), also known as platinum group metals and platinoids, are transition metals located in the d-block of the Periodic Table of Elements (Groups VIII, IX, and X, Periods 5 and 6). The atomic radii of the Os, Ir, and Pt subgroup, caused by the lanthanide contraction of the 4f group elements, are similar to those of the Ru, Rh, Pd subgroup of the PGE. The almost doubling of the number of nucleons with the same atomic radii makes Os, Ir, and Pt the densest elements on Earth. Based on their behavior in magmatic systems, the PGE are subdivided into the iridium-group PGE (Ir-PGE: Os, Ir, Ru, Rh) and the palladium-group PGE (Pd-PGE: Pt, Pd) (Barnes et al., 1985; Barnes, 1999).

Introduction

The PGE were discovered in the eighteenth through early nineteenth centuries by Lewis (1753, 1757), Tennant (1804), and Wollaston (1805); a detailed account of the history of the PGE can be found in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alard, O., Griffin, W. L., Lorand, J.-P., Jackson, S. E., and O’Reilly, S. Y., 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature, 407(6806), 891–894.

    Article  Google Scholar 

  • Arculus, R. J., and Delano, J. W., 1981. Siderophile element abundances in the upper mantle – evidence for a sulfide signature and equilibrium with the core. Geochimica et Cosmochimica Acta, 45(8), 1331–1343.

    Article  Google Scholar 

  • Barnes, S.-J., 1999. Elements: platinum group. In Marshall, C. P., and Fairbringe, R. W. (eds.), Encyclopedia of Geochemistry. Dordrecht/Boston/London: Kluwer Academic Publishers, p. 219.

    Google Scholar 

  • Barnes, S.-J., Naldrett, A. J., and Gorton, M. P., 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology, 53(3–4), 303–323.

    Article  Google Scholar 

  • Becker, H., Horan, M. F., Walker, R. J., Gao, S., Lorand, J.-P., and Rudnick, R. L., 2006. Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta, 70(17), 4528–4550.

    Article  Google Scholar 

  • Bermingham, K. R., Walker, R. J., and Worsham, E. A., 2016. Refinement of high precision Ru isotope analysis using negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry, 403, 15–26.

    Google Scholar 

  • Borisov, A., and Palme, H., 1995. The solubility of iridium in silicate melts: new data from experiments with Ir10Pt90 alloys. Geochimica et Cosmochimica Acta, 59(3), 481–485.

    Article  Google Scholar 

  • Borisov, A., Palme, H., and Spettel, B., 1994. Solubility of palladium in silicate melts: implications for core formation in the Earth. Geochimica et Cosmochimica Acta, 58(2), 705–716.

    Article  Google Scholar 

  • Brandon, A. D., Walker, R. J., and Puchtel, I. S., 2006. Platinum-osmium isotope evolution of the Earth’s mantle: constraints from chondrites and Os-rich alloys. Geochimica et Cosmochimica Acta, 70(8), 2093–2103.

    Article  Google Scholar 

  • Brenan, J. M., McDonough, W. F., and Dalpé, C., 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters, 212(1–2), 135–150.

    Article  Google Scholar 

  • Brenan, J. M., Finnigan, C. F., McDonough, W. F., and Homolova, V., 2012. Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: the importance of ferric iron. Chemical Geology, 302–303, 16–32.

    Article  Google Scholar 

  • Brenan, J. M., Bennett, N. R., and Zajacz, Z., 2016. Experimental results on fractionation of the Highly Siderophile Elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Reviews in Mineralogy and Geochemistry, 81(1), 1–87.

    Article  Google Scholar 

  • Carlson, R. W., 2005. Application of the Pt-Re-Os isotopic systems to mantle geochemistry and geochronology. Lithos, 82(3–4), 249–272.

    Article  Google Scholar 

  • Chen, J. H., Papanastassiou, D. A., and Wasserburg, G. J., 2010. Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochimica et Cosmochimica Acta, 74(13), 3851–3862.

    Article  Google Scholar 

  • Chou, C.-L., Shaw, D. M., and Crocket, J. H., 1983. Siderophile trace elements in the Earth’s oceanic crust and upper mantle. Journal of Geophysical Research, 88(S2), A507–A518.

    Article  Google Scholar 

  • Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J., 1991. Negative thermal ion mass-spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta, 55(1), 397–401.

    Article  Google Scholar 

  • Fischer-Gödde, M., Becker, H., and Wombacher, F., 2011. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chemical Geology, 280(3–4), 365–383.

    Article  Google Scholar 

  • Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S., and Kleine, T., 2015. Ru isotope heterogeneity in the solar protoplanetary disk. Geochimica et Cosmochimica Acta, 168, 151–171.

    Article  Google Scholar 

  • Fleet, M. E., Crocket, J. H., Liu, M., and Stone, W. E., 1999. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos, 47(1–2), 127–142.

    Article  Google Scholar 

  • Fujii, T., Moynier, F., Telouk, P., and Albarède, F., 2006. Mass-independent isotope fractionation of molybdenum and ruthenium and the origin of isotopic anomalies in Murchison. The Astrophysical Journal, 647(2), 1506.

    Article  Google Scholar 

  • Gelinas, A., Kring, D. A., Zurcher, L., Urrutia-Fucugauchi, J., Morton, O., and Walker, R. J., 2004. Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteoritics & Planetary Science, 39(6), 1003–1008.

    Article  Google Scholar 

  • Greenfield, S., 1994. Inductively coupled plasmas in atomic fluorescence spectrometry. A review. Journal of Analytical Atomic Spectrometry, 9(5), 565–592.

    Article  Google Scholar 

  • Jones, J. H., and Drake, M. J., 1986. Geochemical constraints on core formation in the Earth. Nature, 322(6076), 221–228.

    Article  Google Scholar 

  • Keays, R. R., 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34(1–3), 1–18.

    Article  Google Scholar 

  • Lee, S. R., Horton, J. W., and Walker, R. J., 2006. Confirmation of a meteoritic component in impact-melt rocks of the Chesapeake Bay impact structure, Virginia, USA – evidence from osmium isotopic and PGE systematics. Meteoritics & Planetary Science, 41(6), 819–833.

    Article  Google Scholar 

  • Lewis, W., 1753. Experimental examination of a white metallic substance said to be found in the gold mines of the Spanish West Indies, and is there known by the appellations of platina, platina di Pinto, Juan Blanca. Philosophical Transactions of the Royal Society, 48, 638–689.

    Article  Google Scholar 

  • Lewis, W., 1757. Experimental examination of platina. Philosophical Transactions of the Royal Society, 50, 156–166.

    Article  Google Scholar 

  • Li, J., and Agee, C. B., 1996. Geochemistry of mantle-core differentiation at high pressure. Nature, 381(6584), 686–689.

    Article  Google Scholar 

  • Lorand, J.-P., and Alard, O., 2001. Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochimica et Cosmochimica Acta, 65(16), 2789–2806.

    Article  Google Scholar 

  • Luguet, A., Shirey, S. B., Lorand, J.-P., Horan, M. F., and Carlson, R. W., 2007. Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochimica et Cosmochimica Acta, 71(12), 3082–3097.

    Article  Google Scholar 

  • Maier, W. D., 2005. Platinum-group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria. Journal of African Earth Sciences, 41(3), 165–191.

    Article  Google Scholar 

  • McDonald, D., and Hunt, L. B., 1982. A History of Platinum and Its Allied Metals. London: Johnson-Matthey.

    Google Scholar 

  • Morgan, J. W., 1985. Osmium isotope constraints on Earth’s late accretionary history. Nature, 317(6039), 703–705.

    Article  Google Scholar 

  • Morgan, J. W., 1986. Ultramafic xenoliths: clues to Earth’s late accretionary history. Journal of Geophysical Research, 91(B12), 12375–12387.

    Article  Google Scholar 

  • Mungall, J. E., and Naldrett, A. J., 2008. Ore deposits of the platinum-group elements. Elements, 4(4), 253–258.

    Article  Google Scholar 

  • Naldrett, T., Kinnaird, J., Wilson, A., and Chunnett, G., 2008. Concentration of PGE in the Earth’s crust with special reference to the Bushveld complex. Earth Science Frontiers, 15(5), 264–297.

    Article  Google Scholar 

  • Puchtel, I. S., and Humayun, M., 2000. Platinum group elements in Kostomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction. Geochimica et Cosmochimica Acta, 64(24), 4227–4242.

    Article  Google Scholar 

  • Puchtel, I. S., and Humayun, M., 2001. Platinum group element fractionation in a komatiitic basalt lava lake. Geochimica et Cosmochimica Acta, 17(65), 2979–2993.

    Article  Google Scholar 

  • Puchtel, I. S., Humayun, M., Campbell, A., Sproule, R., and Lesher, C. M., 2004. Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochimica et Cosmochimica Acta, 68(6), 1361–1383.

    Article  Google Scholar 

  • Puchtel, I. S., Walker, R. J., James, O. B., and Kring, D. A., 2008. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: implications for the late accretion history of the Moon and Earth. Geochimica et Cosmochimica Acta, 72(12), 3022–3042.

    Article  Google Scholar 

  • Puchtel, I. S., Walker, R. J., Brandon, A. D., and Nisbet, E. G., 2009. Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochimica et Cosmochimica Acta, 73(20), 6367–6389.

    Article  Google Scholar 

  • Puchtel, I. S., Walker, R. J., Touboul, M., Nisbet, E. G., and Byerly, G. R., 2014. Insights into early Earth from the Pt-Re-Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochimica et Cosmochimica Acta, 125, 394–413.

    Article  Google Scholar 

  • Rauch, S., and Morrison, G. M., 2008. Environmental relevance of the platinum-group elements. Elements, 4(4), 259–263.

    Article  Google Scholar 

  • Rehkämper, M., Halliday, A. N., Fitton, J. G., Lee, D.-C., Wieneke, M., and Arndt, N. T., 1999. Ir, Ru, Pt and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum group elements in the mantle. Geochimica et Cosmochimica Acta, 63(22), 3915–3934.

    Article  Google Scholar 

  • Righter, K., and Drake, M. J., 1997. Metal-silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth and Planetary Science Letters, 146(3–4), 541–553.

    Article  Google Scholar 

  • Sharp, M., Gerasimenko, I., Loudin, L. C., Liu, J., James, O. B., Puchtel, I. S., and Walker, R. J., 2014. Characterization of the dominant impactor signature for Apollo 17 impact melt rocks. Geochimica et Cosmochimica Acta, 131, 62–80.

    Article  Google Scholar 

  • Shirey, S. B., and Walker, R. J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26, 423–500.

    Article  Google Scholar 

  • Tennant, S., 1804. On two metals, found in the black powder remaining after the solution of platina. Philosophical Transactions of the Royal Society of London, 94, 411–418.

    Article  Google Scholar 

  • Völkening, J., Walczyk, T., and Heumann, K. G., 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105(2), 147–159.

    Article  Google Scholar 

  • Walker, R. J., 2009. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chemie der Erde – Geochemistry, 69(2), 101–125.

    Article  Google Scholar 

  • Walker, R. J., Morgan, J. W., Beary, E. S., Smoliar, M. I., Czamanske, G. K., and Horan, M. F., 1997. Applications of the190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochimica et Cosmochimica Acta, 61(22), 4799–4807.

    Article  Google Scholar 

  • Walker, R. J., Bermingham, K., Liu, J., Puchtel, I. S., Touboul, M., and Worsham, E. A., 2015. In search of late-stage planetary building blocks. Chemical Geology, 411, 125–142.

    Article  Google Scholar 

  • Wollaston, W. H., 1805. On the discovery of palladium; with observations on other substances found with platina. Philosophical Transactions of the Royal Society of London, 95, 316–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor S. Puchtel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Puchtel, I.S. (2016). Platinum Group Elements. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_274-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_274-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics