Skip to main content

Organic Matter in Fossils

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Definition

Because all organisms on Earth consist of complex organic biomolecules , any fossil may contain organic matter. Indeed, organic matter represents one of the most common fossil materials, occurring within skeletal elements (shells and bones) and making up organically preserved microorganisms, plants, and exceptionally preserved eukaryotes (i.e., animals and algae with remains of non-biomineralized tissues).

Introduction

Remains of organisms in the geologic record occur in a variety of preservational styles, which vary with regard to fossil composition, scale, and dimensionality, in addition to anatomy and morphology. All fossils have the potential for preservation of organic matter, making such material an active area of paleontological and geobiological research. Overall, fossils vary widely in terms of organic matter quantity, composition, and form. The major types of fossils containing organic matter (Fig. 1) include organically preserved microfossils, skeletal fossils,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arouri KR, Greenwood PF, Walter MR (2000) Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem 31:75–89

    Article  Google Scholar 

  • Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280–285

    Article  Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Article  Google Scholar 

  • Boyce CK, Hazen RM, Knoll AH (2001) Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils. Proc Natl Acad Sci U S A 98:5970–5974

    Article  Google Scholar 

  • Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Planet Sci 31:275–301

    Article  Google Scholar 

  • Buckley M et al (2008) Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.”. Science 319:33

    Article  Google Scholar 

  • Butterfield NJ, Harvey THP (2012) Small carbonaceous fossils (SCFs): a new measure of early Paleozoic paleobiology. Geology 40:71–74

    Article  Google Scholar 

  • Cai Y, Schiffbauer JD, Hua H, Xiao S (2012) Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeogr Palaeoclimatol Palaeoecol 326–328:109–117

    Article  Google Scholar 

  • Clements T, Dolocan A, Martin P, Purnell MA, Vinther J, Gabbott SE (2016) The eyes of Tullimonstrum reveal a vertebrate affinity. Nature 532:500–503

    Article  Google Scholar 

  • Cody GD, Gupta NS, Briggs DEG, Kilcoyne ALD, Summons RE, Kenig F, Plotnick RE, Scott AC (2010) Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39:255–258

    Article  Google Scholar 

  • Colleary C, Dolocan A, Gardner J, Singh S, Wuttke M, Rabenstein R, Habersetzer J, Schaal S, Feseha M, Clemens M, Jacobs BF, Currano ED, Jacobs LL, Sylvestersen RL, Gabbott SE, Vinther J (2015) Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc Natl Acad Sci U S A 112:12592–12597

    Article  Google Scholar 

  • Czaja AD, Beukes NJ, Osterhout JT (2016) Sulfur-oxidizing bacteria prior to the great oxidation event from the 2.52 Ga Gamohaan formation of South Africa. Geology 44:983–986

    Article  Google Scholar 

  • De Gregorio BT, Sharp TG (2006) The structure and distribution of carbon in 3.5 Ga apex chert: implications for the biogenicity of Earth’s oldest putative microfossils. Am Mineral 91:784–789

    Article  Google Scholar 

  • Demarchi B et al (2016) Protein sequences bound to mineral surfaces persist into deep time. eLife 5:17092

    Article  Google Scholar 

  • Forchielli A, Steiner M, Hu S, Lüter C, Keupp H (2012) Taphonomy of the earliest Cambrian linguliform brachiopods. Acta Palaeontol Pol 59:185–207

    Google Scholar 

  • Glover CP, Kidwell SM (1993) Influence of organic matrix on the post-mortem destruction of molluscan shells. J Geol 101:729–747

    Article  Google Scholar 

  • House CH, Oehler DZ, Sugitani K, Mimura K (2013) Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans. Geology 41:651–654

    Article  Google Scholar 

  • House CH, Schopf JW, McKeegan KD, Coath CD, Harrison TM, Stetter KO (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710

    Article  Google Scholar 

  • Kouketsu Y, Mizukami T, Mori H, Endo S, Aoya M, Hara H, Nakamura D, Wallis S (2014) A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Island Arc 23:33–50

    Article  Google Scholar 

  • Kudryavtsev AB, Schopf JW, Agresti DG, Wdowiak TJ (2001) In situ laser-Raman imagery of Precambrian microscopic fossils. Proc Natl Acad Sci U S A 98:823–826

    Article  Google Scholar 

  • Lindgren J, Uvdal P, Sjövall P, Nilsson DE, Engdahl A, Schultz BP, Thiel V (2012) Molecular preservation of the pigment melanin in fossil melanosomes. Nat Commun 3:1–7

    Article  Google Scholar 

  • LoDuca ST, Pratt LM (2002) Stable carbon-isotope compositions of compression fossils from lower Paleozoic Konservat-Lagerstätten. PALAIOS 17:287–291

    Article  Google Scholar 

  • Martí Mus M (2014) Interpreting ‘shelly’ fossils preserved as organic films: the case of hyolithids. Lethaia 47:397–404

    Article  Google Scholar 

  • McNamara ME, van Dongen BE, Lockyer NP, Bull ID, Orr PJ (2016) Fossilization of melanosomes via sulfurization. Palaeontology 59:337–350

    Article  Google Scholar 

  • Muscente AD, Michel FM, Dale JG, Xiao S (2015) Assessing the veracity of Precambrian ‘sponge’ fossils using in situ nanoscale analytical techniques. Precambrian Res 263:142–156

    Article  Google Scholar 

  • Muscente AD, Schiffbauer JD, Broce J, Laflamme M, O'Donnell K, Boag TH, Meyer M, Hawkins AD, Huntley JW, McNamara M, MacKenzie LA, Stanley GD Jr, Hinman NW, Hofmann MH, Xiao S (2017) Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res 48:164–188

    Article  Google Scholar 

  • Muscente AD, Xiao S (2015a) New occurrences of Sphenothallus in the lower Cambrian of South China: implications for its affinities and taphonomic demineralization of shelly fossils. Palaeogeogr Palaeoclimatol Palaeoecol 437:141–146

    Article  Google Scholar 

  • Muscente AD, Xiao S (2015b) Resolving three-dimensional and subsurficial features of carbonaceous compressions and shelly fossils using backscattered electron scanning electron microscopy (BSE-SEM). PALAIOS 30:462–481

    Article  Google Scholar 

  • Oehler DZ, Robert F, Walter MR, Sugitani K, Allwood A, Meibom A, Mostefaoui S, Selo M, Thomen A, Gibson EK (2009) NanoSIMS: insights to biogenicity and syngeneity of Archaean carbonaceous structures. Precambrian Res 173:70–78

    Article  Google Scholar 

  • Olcott Marshall A, Marshall CP (2014) Vibrational spectroscopy of fossils. Palaeontology 58:201–211

    Article  Google Scholar 

  • Orlando L et al (2013) Recalibrating Equus evolution using the genome sequence of an early middle Pleistocene horse. Nature 499:74–78

    Article  Google Scholar 

  • Rex GM, Chaloner WG (1983) The experimental formation of plant compression fossils. Palaeontology 26:231–252

    Google Scholar 

  • Schopf JW, Kudryavtsev AB (2005) Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology 3:1–12

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5:333–371

    Article  Google Scholar 

  • Schopf JW, Tripathi AB, Kudryavtsev AB (2006) Three-dimensional confocal optical imagery of Precambrian microscopic organisms. Astrobiology 6:1–16

    Article  Google Scholar 

  • Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil preservation. Comptes Rendus Palevol 7:159–184

    Article  Google Scholar 

  • Stankiewicz BA, Briggs DEG, Michels R, Collinson ME, Flannery MB, Evershed RP (2000) Alternative origin of aliphatic polymer in kerogen. Geology 28:559–562

    Article  Google Scholar 

  • Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R (2016) Spectroscopic studies on organic matter from Triassic reptile bones, upper Silesia, Poland. PLoS One 11:e0151143

    Article  Google Scholar 

  • Tegelaar EW, De Leeuw JW, Derenne S, Largeau C (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103–3106

    Article  Google Scholar 

  • Vinther J (2016) Fossil melanosoems or bacteria? A wealth of findings favours melanosomes. BioEssays 38:220–225

    Article  Google Scholar 

  • Williford KH, Ushikubo T, Schopf JW, Lepot K, Kitajima K, Valley JW (2013) Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils. Geochim Cosmochim Acta 104:165–182

    Article  Google Scholar 

  • Zabini C, Schiffbauer JD, Xiao S, Kowalewski M (2012) Biomineralization, taphonomy, and diagenesis of Paleozoic lingulid brachiopod shells preserved in silicified mudstone concretions. Palaeogeogr Palaeoclimatol Palaeoecol 326–328:118–127

    Article  Google Scholar 

  • Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D, Xu X, Wang X (2015) Fossilized melanosomes and the colour of cretaceous dinosaurs and birds. Nature 463:1075–1078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Muscente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Muscente, A.D., Czaja, A.D., Riedman, L.A., Colleary, C. (2018). Organic Matter in Fossils. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_185-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_185-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics